2 resultados para Waste quantification
em CORA - Cork Open Research Archive - University College Cork - Ireland
Experimental quantification and modelling of attrition of infant formulae during pneumatic conveying
Resumo:
Infant formula is often produced as an agglomerated powder using a spray drying process. Pneumatic conveying is commonly used for transporting this product within a manufacturing plant. The transient mechanical loads imposed by this process cause some of the agglomerates to disintegrate, which has implications for key quality characteristics of the formula including bulk density and wettability. This thesis used both experimental and modelling approaches to investigate this breakage during conveying. One set of conveying trials had the objective of establishing relationships between the geometry and operating conditions of the conveying system and the resulting changes in bulk properties of the infant formula upon conveying. A modular stainless steel pneumatic conveying rig was constructed for these trials. The mode of conveying and air velocity had a statistically-significant effect on bulk density at a 95% level, while mode of conveying was the only factor which significantly influenced D[4,3] or wettability. A separate set of conveying experiments investigated the effect of infant formula composition, rather than the pneumatic conveying parameters, and also assessed the relationships between the mechanical responses of individual agglomerates of four infant formulae and their compositions. The bulk densities before conveying, and the forces and strains at failure of individual agglomerates, were related to the protein content. The force at failure and stiffness of individual agglomerates were strongly correlated, and generally increased with increasing protein to fat ratio while the strain at failure decreased. Two models of breakage were developed at different scales; the first was a detailed discrete element model of a single agglomerate. This was calibrated using a novel approach based on Taguchi methods which was shown to have considerable advantages over basic parameter studies which are widely used. The data obtained using this model compared well to experimental results for quasi-static uniaxial compression of individual agglomerates. The model also gave adequate results for dynamic loading simulations. A probabilistic model of pneumatic conveying was also developed; this was suitable for predicting breakage in large populations of agglomerates and was highly versatile: parts of the model could easily be substituted by the researcher according to their specific requirements.
Resumo:
Anaerobic digestion (AD) of biodegradable waste is an environmentally and economically sustainable solution which incorporates waste treatment and energy recovery. The organic fraction of municipal solid waste (OFMSW), which comprises mostly of food waste, is highly degradable under anaerobic conditions. Biogas produced from OFMSW, when upgraded to biomethane, is recognised as one of the most sustainable renewable biofuels and can also be one of the cheapest sources of biomethane if a gate fee is associated with the substrate. OFMSW is a complex and heterogeneous material which may have widely different characteristics depending on the source of origin and collection system used. The research presented in this thesis investigates the potential energy resource from a wide range of organic waste streams through field and laboratory research on real world samples. OFMSW samples collected from a range of sources generated methane yields ranging from 75 to 160 m3 per tonne. Higher methane yields are associated with source segregated food waste from commercial catering premises as opposed to domestic sources. The inclusion of garden waste reduces the specific methane yield from household organic waste. In continuous AD trials it was found that a conventional continuously stirred tank reactor (CSTR) gave the highest specific methane yields at a moderate organic loading rate of 2 kg volatile solids (VS) m-3 digester day-1 and a hydraulic retention time of 30 days. The average specific methane yield obtained at this loading rate in continuous digestion was 560 ± 29 L CH4 kg-1 VS which exceeded the biomethane potential test result by 5%. The low carbon to nitrogen ratio (C: N <14:1) associated with canteen food waste lead to increasing concentrations of volatile fatty acids in line with high concentrations of ammonia nitrogen at higher organic loading rates. At an organic loading rate of 4 kg VS m-3day-1 the specific methane yield dropped considerably (381 L CH4 kg-1 VS), the pH rose to 8.1 and free ammonia (NH3 ) concentrations reached toxicity levels towards the end of the trial (ca. 950 mg L-1). A novel two phase AD reactor configuration consisting of a series of sequentially fed leach bed reactors connected to an upflow anaerobic sludge blanket (UASB) demonstrated a high rate of organic matter decay but resulted in lower specific methane yields (384 L CH4 kg-1 VS) than the conventional CSTR system.