3 resultados para Viral genetics

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteriophages, viruses infecting bacteria, are uniformly present in any location where there are high numbers of bacteria, both in the external environment and the human body. Knowledge of their diversity is limited by the difficulty to culture the host species and by the lack of the universal marker gene present in all viruses. Metagenomics is a powerful tool that can be used to analyse viral communities in their natural environments. The aim of this study was to investigate diverse populations of uncultured viruses from clinical (a sputum of patient with cystic fibrosis, CF) and environmental samples (a sludge from a dairy food wastewater treatment plant) containing rich bacterial populations using genetic and metagenomic analyses. Metagenomic sequencing of viruses obtained from these samples revealed that the majority of the metagenomic reads (97-99%) were novel when compared to the NCBI protein database using BLAST. A large proportion of assembled contigs were assignable as novel phages or uncharacterised prophages, the next largest assignable group being single-stranded eukaryotic virus genomes. Sputum from a cystic fibrosis patient contained DNA typical of phages of bacteria that are traditionally involved in CF lung infections and other bacteria that are part of the normal oral flora. The only eukaryotic virus detected in the CF sputum was Torque Teno virus (TTV). A substantial number of assigned sequences from dairy wastewater could be affiliated with phages of bacteria that are typically found in the soil and aquatic environments, including wastewater. Eukaryotic viral sequences were dominated by plant pathogens from the Geminiviridae and Nanoviridae families, and animal pathogens from the Circoviridae family. Antibiotic resistance genes were detected in both metagenomes suggesting phages could be a source for transmissible antimicrobial resistance. Overall, diversity of viruses in the CF sputum was low, with 89 distinct viral genotypes predicted, and higher (409 genotypes) in the wastewater. Function-based screening of a metagenomic library constructed from DNA extracted from dairy food wastewater viruses revealed candidate promoter sequences that have ability to drive expression of GFP in a promoter-trap vector in Escherichia coli. The majority of the cloned DNA sequences selected by the assay were related to ssDNA circular eukaryotic viruses and phages which formed a minority of the metagenome assembly, and many lacked any significant homology to known database sequences. Natural diversity of bacteriophages in wastewater samples was also examined by PCR amplification of the major capsid protein sequences, conserved within T4-type bacteriophages from Myoviridae family. Phylogenetic analysis of capsid sequences revealed that dairy wastewater contained mainly diverse and uncharacterized phages, while some showed a high level of similarity with phages from geographically distant environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused by the expression of a mutant Huntingtin (muHTT) protein. Therefore, preventing the expression of muHTT by harnessing the specificity of the RNA interference (RNAi) pathway is a key research avenue for developing novel therapies for HD. However, the biggest caveat in the RNAi approach is the delivery of short interfering RNA (siRNAs) to neurons, which are notoriously difficult to transfect. Indeed, despite the great advances in the field of nanotechnology, there remains a great need to develop more effective and less toxic carriers for siRNA delivery to the Central Nervous System (CNS). Thus, the aim of this thesis was to investigate the utility of modified amphiphilic β-cyclodextrins (CDs), oligosaccharide-based molecules, as non-viral vectors for siRNA delivery for HD. Modified CDs were able to bind and complex siRNAs forming nanoparticles capable of delivering siRNAs to ST14A-HTT120Q cells and to human HD fibroblasts, and reducing the expression of the HTT gene in these in vitro models of HD. Moreover, direct administration of CD.siRNA nanoparticles into the R6/2 mouse brain resulted in significant HTT gene expression knockdown and selective alleviation of rotarod motor deficits in this mouse model of HD. In contrast to widely used transfection reagents, CD.siRNA nanoparticles only induced limited cytotoxic and neuroinflammatory responses in multiple brain-derived cell-lines, and also in vivo after single direct injections into the mouse brain. Alternatively, we have also described a PEGylation-based formulation approach to further stabilise CD.siRNA nanoparticles and progress towards a systemic delivery nanosystem. Resulting PEGylated CD.siRNA nanoparticles showed increased stability in physiological saltconditions and, to some extent, reduced protein-induced aggregation. Taken together, the work outlined in this thesis identifies modified CDs as effective, safe and versatile siRNA delivery systems that hold great potential for the treatment of CNS disorders, such as HD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sprouty proteins are key regulators of cell growth and branching morphogenesis during development. Human SPRY3 which maps to the pseudoautosomal region 2, undergoes random X-inactivation in females and preferential Y-inactivation in males, behaving as though genetically X-linked. Spry3 is widely expressed in neuronal tissues, being found at high levels in the cerebellum and particularly in the Purkinje cells which, notably, are deficient in the autistic brain. Spry3 is also highly expressed in other ganglia in adults including retinal ganglion cells, dorsal root ganglion and superior cervical ganglion. SPRY3 enhancer can drive SPRY3 expression in the lung airway, which is consistent with a role in branching morphogenesis and the function of the original Drosophila Spry gene, which is critical for lung morphogenesis, providing a possible explanation for an observed anatomic abnormality in the autistic lung airway. In the human and mouse, the SPRY3 core promoter contains an AG-rich repeat and we found evidence of coexpression, promoter binding and regulation of SPRY3 expression by transcription factors EGR1, ZNF263 and PAX6. Spry3 over-expression in mouse superior cervical ganglion cells inhibits axon branching and Spry3 knockdown in those cells increases axon branching, consistent with known functions of other Sprouty proteins. Novel SPRY3 upstream transcripts that I characterised originate from three start sites in the X-linked F8A3 – TMLHE gene region, which is recently implicated in autism causation. Arising from these findings, I propose that the lung airway abnormality and low levels of blood carnitine found in autism suggest that deregulation of SPRY3 may underpin a subset of autism cases.