6 resultados para Very small field
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
PRBMs (pseudo-rigid-body models) have been becoming important engineering technologies/methods in the field of compliant mechanisms to simplify the design and analysis through the use of the knowledge body of rigid-body mechanisms coupling with springs. This article addresses the PRBMs of spatial multi-beam modules for planar motion, which are composed of three or more symmetrical wire/slender beams parallel to each other where the planar twisting DOF (degree of freedom) is assumed to be very small for specific applications/loading conditions. Simplified PRBMs are firstly proposed through replacing each beam in spatial multi-beam module with a rigid-body link plus two identical spherical joints at its two ends. The characteristics factor, bending stiffness and twisting stiffness for the spherical joint are determined. Load-displacement equations are then derived for a class of spatial multi-beam modules and general spatial multi-beam modules using the virtual work principle and kinematic relationships. Finally, nonlinear FEA (finite element analysis) is employed with comparisons with the PRBMs. The present PRBMs have shown the ability to predict the primary nonlinear constraint characteristics such as load-stiffening effect, cross-axis coupling in the two primary translational directions and buckling load.
Resumo:
In this paper, the research focus is how to entangle magnetic dipoles to control/engineer magnetic properties of different devices at a submicron/nano scale. Here, we report the generation of synthetic arrays of tunable magnetic dipoles in a nanomodulated continuous ferromagnetic film. In-plane magnetic field rotations in modulated Ni 45Fe 55 revealed various rotational symmetries of magnetic anisotropy due to dipolar interaction with a crossover from lower to higher fold as a function of modulation geometry. Additionally, the effect of aspect ratio on symmetry shows a novel phase shift of anisotropy, which could be critical to manipulate the overall magnetic properties of the patterned film. The tendency to form vortex is in fact found to be very small, which highlights that the strong coupling between metastable dipoles is more favorable than vortex formation to minimize energy in this nanomodulated structure. This has further been corroborated by the observation of step hysteresis, magnetic force microscopy images of tunable magnetic dipoles, and quantitative micromagnetic simulations. An analytical expression has been derived to estimate the overall anisotropy accurately for nanomodulated film having low magnetocrystaline anisotropy. Derived mathematical expressions based on magnetic dipolar interaction are found to be in good agreement with our results.
Resumo:
Introduction: The work environment and Occupational Health and Safety (OHS) practice have changed over the last number of years. A holistic OHS approach has been recommended by the authorities in this field (e.g. World Health Organisation (WHO), European Agency for Safety and Health at Work (EU-OSHA) and the International Labour Organisation (ILO)). This involves a unified action engaging elements of the physical and psychosocial workplace with greater focus on prevention and promotion of health and wellbeing. The health and safety practitioner (HSP) has been recognised as one of the main agents for implementation of OHS. Within an organisation they act as a leader of change and a professional who shapes health and safety while safeguarding the wellbeing of individuals at work. Additionally, safety climate (SC) has been developed as an essential concept for OHS of an organisation, its productivity and the wellbeing of its workforce. Scholars and practitioners have recognised the great need for further empirical evidence on the HSP’s role in a changing work environment that increasingly requires the use of preventative measures and the assessment and management of psychosocial work-related risks. This doctoral research brings together the different concepts used in OHS and Public Health including SC, Psychosocial workplace risks, Health Promotion and OHS performance. The associations between these concepts are analysed bearing in mind the WHO Healthy Workplace Framework and three of its main components (physical and psychosocial work environment and health resources). This thesis aims to establish a deeper understanding of the practice and management of OHS in Ireland and the UK, exploring the role of HSPs (employed in diverse sectors of activity) and of SC in the OHS of organisations. Methods: One systematic review and three cross-sectional research studies were performed. The systematic review focussed on the evidence compiled for the association of SC with accidents and injuries at work, clarifying this concept’s definition and its most relevant dimensions. The second article (chapter 3) explored the association of SC with accidents and injuries in a sample of workers (n=367) from a pharmaceutical industry and compared permanent with non-permanent workers. Associations of safety climate with employment status and with self-reported occupational accidents/injuries were studied through logistic regression modelling. The third and fourth papers in this thesis investigated the main tasks performed by HSPs, their perceptions of SC, health climate (HC), psychosocial risk factors and health outcomes as well as work efficacy. Validated questionnaires were applied to a sample of HSPs in Ireland and UK, members of the Institute of Occupational Safety and Health (n=1444). Chi-square analysis and logistic regression were used to assess the association between HSPs work characteristics and their involvement in the management of Psychosocial Risk Factors, Safety Culture and Health Promotion (paper 3). Multiple linear regression analysis was used to determine the association between SC, HC, psychosocial risk factors and health outcomes (general health and mental wellbeing) and self-efficacy. Results: As shown in the systematic review, scientific evidence is unable to establish the widely assumed causal link between SC and accidents and injuries. Nevertheless, the current results suggested that, particularly, the organisational dimensions of SC were associated with accidents and injuries and that SC is linked to health, wellbeing and safety performance in the organisation. According to the present research, contingent workers had lower SC perceptions but showed a lower accident/injury rate than their permanent colleagues. The associations of safety climate with accidents/injuries had opposite directions for the two types of workers as for permanent employees it showed an inverse relationship while for temporary workers, although not significant, a positive association was found. This thesis’ findings showed that HSPs are, to a very small degree, included in activities related to psychosocial risk management and assessment, to a moderate degree, involved in HP activities and, to a large degree, engaged in the management of safety culture in organisations. In the final research study, SC and HC were linked to job demands-control-support (JDCS), health, wellbeing and efficacy. JDCS were also associated with all three outcomes under study. Results also showed the contribution of psychosocial risk factors to the association of SC and HC with all the studied outcomes. These associations had rarely been recorded previously. Discussion & Conclusions: Health and safety climate showed a significant association with health, wellbeing and efficacy - a relationship which affects working conditions and the health and wellbeing of the workforce. This demonstrates the link of both SC and HC with the OHS and the general strength or viability of organisations. A division was noticed between the area of “health” and “safety” in the workplace and in the approach to the physical and psychosocial work environment. These findings highlighted the current challenge in ensuring a holistic and multidisciplinary approach for prevention of hazards and for an integrated OHS management. HSPs have shown to be a pivotal agent in the shaping and development of OHS in organisations. However, as observed in this thesis, the role of these professionals is still far from the recommended involvement in the management of psychosocial risk factors and could have a more complete engagement in other areas of OHS such as health promotion. Additionally, a strong culture of health and safety with supportive management and buy-in from all stakeholders is essential to achieve the ideal unified and prevention-focussed approach to OHS as recommended by the WHO, EU-OSHA and ILO.
Resumo:
The microphase separation of block copolymer (BCP) thin films can afford a simple and cost-effective means to studying nanopattern surfaces, and especially the fabrication of nanocircuitry. However, because of complex interface effects and other complications, their 3D morphology, which is often critical for application, can be more complex than first thought. Here, we describe how emerging microscopic methods may be used to study complex BCP patterns and reveal their rich detail. These methods include helium ion microscopy (HIM) and high resolution x-section transmission electron microscopy (XTEM), and complement conventional secondary electron and atomic force microscopies (SEM and TEM). These techniques reveal that these structures are quite different to what might be expected. We illustrate the advances in the understanding of BCP thin film morphology in several systems, which result from this characterization. The systems described include symmetric, lamellar forming polystyrene-b-polymethylmethacrylate (PS-b-PMMA), cylinder forming polystyrene-b-polydimethylsiloxane (PS-b-PDMS), as well as lamellar and cylinder forming patterns of polystyrene-b-polyethylene oxide (PS-b-PEO) and polystyrene-b-poly-4-vinylpyridine (PS-b-P4VP). Each of these systems exhibits more complex arrangements than might be first thought. Finding and developing techniques whereby complex morphologies, particularly at very small dimensions, can be determined is critical to the practical use of these materials in many applications. The importance of quantifying these complex morphologies has implications for their use in integrated circuit manufacture, where they are being explored as alternative pattern forming methods to conventional UV lithography.
Resumo:
Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g (2)(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs.
Resumo:
The changing economic and technological conditions often referred to as ‘globalization’ have had a deep impact on the very nature of the state, and thus on the aims, objectives and implementation of cultural policy, including film policy. In this paper, I discuss the main changes in film policy there have been in Mexico, comparing the time when the welfare state regarded cinema as crucial to the national identity, and actively supported the national cinema at the production, distribution and exhibition levels (about 1920-1980), and the recent onset of neoliberal policies, during which the industry was privatized and globalized. I argue the result has been a transformation of the film production, from the properly ‘national’ cinema it was during the welfare state—that is, having a role in nation building, democratization processes and being an important part of the public sphere—into a kind of genre, catering for a very small niche audience both domestically and internationally. However, exhibition and digital distribution have been strengthened, perhaps pointing towards a more meaningful post-national cinema.