4 resultados para Variation of Resource Consumption

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is focused on the design and synthesis of a diverse range of novel organosulfur compounds (sulfides, sulfoxides and sulfones), with the objective of studying their solid state properties and thereby developing an understanding of how the molecular structure of the compounds impacts upon their solid state crystalline structure. In particular, robust intermolecular interactions which determine the overall structure were investigated. These synthons were then exploited in the development of a molecular switch. Chapter One provides a brief overview of crystal engineering, the key hydrogen bonding interactions utilized in this work and also a general insight into “molecular machines” reported in the literature of relevance to this work. Chapter Two outlines the design and synthetic strategies for the development of two scaffolds suitable for incorporation of terminal alkynes, organosulfur and ether functionalities, in order to investigate the robustness and predictability of the S=O•••H-C≡C- and S=O•••H-C(α) supramolecular synthons. Crystal structures and a detailed analysis of the hydrogen bond interactions observed in these compounds are included in this chapter. Also the biological activities of four novel tertiary amines are discussed. Chapter Three focuses on the design and synthesis of diphenylacetylene compounds bearing amide and sulfur functionalities, and the exploitation of the N-H•••O=S interactions to develop a “molecular switch”. The crystal structures, hydrogen bonding patterns observed, NMR variable temperature studies and computer modelling studies are discussed in detail. Chapter Four provides the overall conclusions from chapter two and chapter three and also gives an indication of how the results of this work may be developed in the future. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of the NCI (National Cancer Institute) biological test results are included in the appendix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical-structural characteristics of the direct optical band-gap semiconducting series of surfactant template-mediated laminar (CdS)x(CdCl2)y(CnH2n+4N)z nanocomposites are reported. X-ray diffraction measurements of the nanocomposites exhibited interlaminar distances in the range 2.9-3.6 nm with observations of eighth order {0 0 l} diffraction planes indicative of a high degree of laminarity and crystallographic order. Diffuse reflectance measurements have determined that the profile of their emission spectrum is that of a direct band-gap with absorption edges in the range 2.11-2.40 eV, depending on the CdS mole fraction in the nanocomposite. Photoluminescence (PL) excitation and time-resolved PL spectroscopies give an estimate of the maximum relative absorbance of the nanocomposites at ∼420 nm while the minimum was observed at ∼560 nm. The main emission was observed at ∼700 nm with emission from doubly ionized sulphur vacancies observed at ∼615 nm at room temperature. The CdS-containing nanocomposite is thus a surfactant-mediated modular system with variable band-gap energy emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study of the effects of alcohol consumption on household income in Ireland using the Slán National Health and Lifestyle Survey 2007 dataset, accounting for endogeneity and selection bias. Drinkers are categorised into one of four categories based on the recommended weekly drinking levels by the Irish Health Promotion Unit; those who never drank, non-drinkers, moderate and heavy drinkers. A multinomial logit OLS Two Step Estimate is used to explain individual's choice of drinking status and to correct for selection bias which would result in the selection into a particular category of drinking being endogenous. Endogeneity which may arise through the simultaneity of drinking status and income either due to the reverse causation between the two variables, income affecting alcohol consumption or alcohol consumption affecting income, or due to unobserved heterogeneity, is addressed. This paper finds that the household income of drinkers is higher than that of non-drinkers and of those who never drank. There is very little difference between the household income of moderate and heavy drinkers, with heavy drinkers earning slightly more. Weekly household income for those who never drank is €454.20, non-drinkers is €506.26, compared with €683.36 per week for moderate drinkers and €694.18 for heavy drinkers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power efficiency is one of the most important constraints in the design of embedded systems since such systems are generally driven by batteries with limited energy budget or restricted power supply. In every embedded system, there are one or more processor cores to run the software and interact with the other hardware components of the system. The power consumption of the processor core(s) has an important impact on the total power dissipated in the system. Hence, the processor power optimization is crucial in satisfying the power consumption constraints, and developing low-power embedded systems. A key aspect of research in processor power optimization and management is “power estimation”. Having a fast and accurate method for processor power estimation at design time helps the designer to explore a large space of design possibilities, to make the optimal choices for developing a power efficient processor. Likewise, understanding the processor power dissipation behaviour of a specific software/application is the key for choosing appropriate algorithms in order to write power efficient software. Simulation-based methods for measuring the processor power achieve very high accuracy, but are available only late in the design process, and are often quite slow. Therefore, the need has arisen for faster, higher-level power prediction methods that allow the system designer to explore many alternatives for developing powerefficient hardware and software. The aim of this thesis is to present fast and high-level power models for the prediction of processor power consumption. Power predictability in this work is achieved in two ways: first, using a design method to develop power predictable circuits; second, analysing the power of the functions in the code which repeat during execution, then building the power model based on average number of repetitions. In the first case, a design method called Asynchronous Charge Sharing Logic (ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 microcontroller. The ACSL circuits are power predictable due to the independency of their power consumption to the input data. Based on this property, a fast prediction method is presented to estimate the power of ALU by analysing the software program, and extracting the number of ALU-related instructions. This method achieves less than 1% error in power estimation and more than 100 times speedup in comparison to conventional simulation-based methods. In the second case, an average-case processor energy model is developed for the Insertion sort algorithm based on the number of comparisons that take place in the execution of the algorithm. The average number of comparisons is calculated using a high level methodology called MOdular Quantitative Analysis (MOQA). The parameters of the energy model are measured for the LEON3 processor core, but the model is general and can be used for any processor. The model has been validated through the power measurement experiments, and offers high accuracy and orders of magnitude speedup over the simulation-based method.