8 resultados para Usefulness

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis aimed to provide an understanding of how human-induced changes in the economic sectors of agriculture and transport affect carabid diversity, potential carabidmediated biocontrol and predator-pest interactions. The research involved both observational and manipulative laboratory and field-based studies. Observational research consisted of two large-scale investigations of (1) the impact of Miscanthus and oilseed rape production (n=45) and (2) the impact of horticultural and ecological based landscaping of roadside verges (n=64). This research is the first record of carabid diversity, potential biocontrol and community assemblage with respect to bioenergy crop production and roadside landscaping in an Irish context and it is also an important addition to the limited knowledge of carabid populations in these ecosystems internationally. Manipulative work involved the examination of the role predator identity, diversity and biomass play in the suppression of pollen beetle larvae (an economically damaging insect pest of oilseed rape in Europe), using a novel experimental design called ‘simplex’. To complement this research, an additional field study on the impact of low and high oilseed rape pesticide management on carabid species richness and abundance, and crop yield, was also conducted. This research is a great contribution to the existing understanding of what constitutes the important components of predator biodiversity and expands the knowledge of the usefulness of carabid predators in the context of pollen beetle larvae control. In particular, the work shows that the abundance or biomass of beetles has an effect that is far larger than the effect of diversity on the capacity of beetles to consume prey. In turn, the field study showed that pesticide applications had little impact on yield, or carabid richness, but that carabid abundance/biomass declined drastically. The work provides compelling evidence that management practices erode the useful components of biodiversity that are essential for the delivery of biocontrol services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis I present the work done during my PhD in the area of low dimensional quantum gases. The chapters of this thesis are self contained and represent individual projects which have been peer reviewed and accepted for publication in respected international journals. Various systems are considered, the first of which is a two particle model which possesses an exact analytical solution. I investigate the non-classical correlations that exist between the particles as a function of the tunable properties of the system. In the second work I consider the coherences and out of equilibrium dynamics of a one-dimensional Tonks-Girardeau gas. I show how the coherence of the gas can be inferred from various properties of the reduced state and how this may be observed in experiments. I then present a model which can be used to probe a one-dimensional Fermi gas by performing a measurement on an impurity which interacts with the gas. I show how this system can be used to observe the so-called orthogonality catastrophe using modern interferometry techniques. In the next chapter I present a simple scheme to create superposition states of particles with special emphasis on the NOON state. I explore the effect of inter-particle interactions in the process and then characterise the usefulness of these states for interferometry. Finally I present my contribution to a project on long distance entanglement generation in ion chains. I show how carefully tuning the environment can create decoherence-free subspaces which allows one to create and preserve entanglement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal oxide clusters of sub-nm dimensions dispersed on a metal oxide support are an important class of catalytic materials for a number of key chemical reactions, showing enhanced reactivity over the corresponding bulk oxide. In this paper we present the results of a density functional theory study of small sub-nm TiO2 clusters, Ti2O4, Ti3O6 and Ti4O8 supported on the rutile (110) surface. We find that all three clusters adsorb strongly with adsorption energies ranging from -3 eV to -4.5 eV. The more stable adsorption structures show a larger number of new Ti-O bonds formed between the cluster and the surface. These new bonds increase the coordination of cluster Ti and O as well as surface oxygen, so that each has more neighbours. The electronic structure shows that the top of the valence band is made up of cluster derived states, while the conduction band is made up of Ti 3d states from the surface, resulting in a reduction of the effective band gap and spatial separation of electrons and holes after photon absorption, which shows their potential utility in photocatalysis. To examine reactivity, we study the formation of oxygen vacancies in the cluster-support system. The most stable oxygen vacancy sites on the cluster show formation energies that are significantly lower than in bulk TiO2, demonstrating the usefulness of this composite system for redox catalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The topic of this thesis is impulsivity. The meaning and measurement of impulse control is explored, with a particular focus on forensic settings. Impulsivity is central to many areas of psychology; it is one of the most common diagnostic criteria of mental disorders and is fundamental to the understanding of forensic personalities. Despite this widespread importance there is little agreement as to the definition or structure of impulsivity, and its measurement is fraught with difficulty owing to a reliance on self-report methods. This research aims to address this problem by investigating the viability of using simple computerised cognitive performance tasks as complementary components of a multi-method assessment strategy for impulse control. Ultimately, the usefulness of this measurement strategy for a forensic sample is assessed. Impulsivity is found to be a multifaceted construct comprised of a constellation of distinct sub-dimensions. Computerised cognitive performance tasks are valid and reliable measures that can assess impulsivity at a neuronal level. Self-report and performance task methods assess distinct components of impulse control and, for the optimal assessment of impulse control, a multi-method battery of self-report and performance task measures is advocated. Such a battery is shown to have demonstrated utility in a forensic sample, and recommendations for forensic assessment in the Irish context are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principal objective of this thesis was to investigate the ability of reversible optical O2 sensors to be incorporated into food/beverage packaging systems to continuously monitor O2 levels in a non-destructive manner immediately postpackaging and over time. Residual levels of O2 present in packs can negatively affect product quality and subsequently, product shelf-life, especially for O2-sensitive foods/beverages. Therefore, the ability of O2 sensors to continuously monitor O2 levels present within food/beverage packages was considered commercially relevant in terms of identifying the consequences of residual O2 on product safety and quality over time. Research commenced with the development of a novel range of O2 sensors based on phosphorescent platinum and palladium octaethylporphyrin-ketones (OEPk) in nano-porous high density polyethylene (HDPE), polypropylene (PP) polytetrafluoroethylene (PTFE) polymer supports. Sensors were calibrated over a temperature range of -10°C to +40°C and deemed suitable for food and beverage packaging applications. This sensor technology was used and demonstrated itself effective in determining failures in packaging containment. This was clearly demonstrated in the packaging of cheese string products. The sensor technology was also assessed across a wide range of packaged products; beer, ready-to-eat salad products, bread and convenience-style, muscle-based processed food products. The O2 sensor technology performed extremely well within all packaging systems. The sensor technology adequately detected O2 levels in; beer bottles prior to and following pasteurisation, modified atmosphere (MA) packs of ready-to-eat salad packs as respiration progressed during product storage and MA packs of bread and convenience-style muscle-based products as mycological growth occurred in food packs over time in the presence and absence of ethanol emitters. The use of the technology, in conjunction with standard food quality assessment techniques, showed remarkable usefulness in determining the impact of actual levels of O2 on specific quality attributes. The O2 sensing probe was modified, miniaturised and automated to screen for the determination of total aerobic viable counts (TVC) in several fish species samples. The test showed good correlation with conventional TVC test (ISO:4833:2003), analytical performance and ruggedness with respect to variation of key assay parameters (probe concentration and pipetting volume). Overall, the respirometric fish TVC test was simple to use, possessed a dynamic microbial range (104-107 cfu/g sample), had an accuracy of +/- one log(cfu/g sample) and was rapid. Its ability to assess highly perishable products such as fish for total microbial growth in <12 hr demonstrates commercial potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis explores the use of electromagnetics for both steering and tracking of medical instruments in minimally invasive surgeries. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. Navigation to the peripheral regions of the lung is difficult due to physical dimensions of the bronchi and current methods have low successes rates for accurate diagnosis. Firstly, the potential use of DC magnetic fields for the actuation of catheter devices with permanently magnetised distal attachments is investigated. Catheter models formed from various materials and magnetic tip formations are used to examine the usefulness of relatively low power and compact electromagnets. The force and torque that can be exerted on a small permanent magnet is shown to be extremely limited. Hence, after this initial investigation we turn our attention to electromagnetic tracking, in the development of a novel, low-cost implementation of a GPS-like system for navigating within a patient. A planar magnetic transmitter, formed on a printed circuit board for a low-profile and low cost manufacture, is used to generate a low frequency magnetic field distribution which is detected by a small induction coil sensor. The field transmitter is controlled by a novel closed-loop system that ensures a highly stable magnetic field with reduced interference from one transmitter coil to another. Efficient demodulation schemes are presented which utilise synchronous detection of each magnetic field component experienced by the sensor. The overall tracking accuracy of the system is shown to be less than 2 mm with an orientation error less than 1°. A novel demodulation implementation using a unique undersampling approach allows the use of reduced sample rates to sample the signals of interest without loss of tracking accuracy. This is advantageous for embedded microcontroller implementations of EM tracking systems. The EM tracking system is demonstrated in the pre-clinical environment of a breathing lung phantom. The airways of the phantom are successfully navigated using the system in combination with a 3D computer model rendered from CT data. Registration is achieved using both a landmark rigid registration method and a hybrid fiducial-free approach. The design of a planar magnetic shield structure for blocking the effects of metallic distortion from below the transmitter is presented which successfully blocks the impact of large ferromagnetic objects such as operating tables. A variety of shielding material are analysed with MuMetal and ferrite both providing excellent shieling performance and an increased signal to noise ratio. Finally, the effect of conductive materials and human tissue on magnetic field measurements is presented. Error due to induced eddy currents and capacitive coupling is shown to severely affect EM tracking accuracy at higher frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron microscopy (EM) has advanced in an exponential way since the first transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ things is an essential part of human nature (talk of ‘seeing is believing’) and apart from scanning tunnel microscopes which give information about the surface, EM is the only imaging technology capable of really visualising atomic structures in depth down to single atoms. With the development of nanotechnology the demand to image and analyse small things has become even greater and electron microscopes have found their way from highly delicate and sophisticated research grade instruments to key-turn and even bench-top instruments for everyday use in every materials research lab on the planet. The semiconductor industry is as dependent on the use of EM as life sciences and pharmaceutical industry. With this generalisation of use for imaging, the need to deploy advanced uses of EM has become more and more apparent. The combination of several coinciding beams (electron, ion and even light) to create DualBeam or TripleBeam instruments for instance enhances the usefulness from pure imaging to manipulating on the nanoscale. And when it comes to the analytic power of EM with the many ways the highly energetic electrons and ions interact with the matter in the specimen there is a plethora of niches which evolved during the last two decades, specialising in every kind of analysis that can be thought of and combined with EM. In the course of this study the emphasis was placed on the application of these advanced analytical EM techniques in the context of multiscale and multimodal microscopy – multiscale meaning across length scales from micrometres or larger to nanometres, multimodal meaning numerous techniques applied to the same sample volume in a correlative manner. In order to demonstrate the breadth and potential of the multiscale and multimodal concept an integration of it was attempted in two areas: I) Biocompatible materials using polycrystalline stainless steel and II) Semiconductors using thin multiferroic films. I) The motivation to use stainless steel (316L medical grade) comes from the potential modulation of endothelial cell growth which can have a big impact on the improvement of cardio-vascular stents – which are mainly made of 316L – through nano-texturing of the stent surface by focused ion beam (FIB) lithography. Patterning with FIB has never been reported before in connection with stents and cell growth and in order to gain a better understanding of the beam-substrate interaction during patterning a correlative microscopy approach was used to illuminate the patterning process from many possible angles. Electron backscattering diffraction (EBSD) was used to analyse the crystallographic structure, FIB was used for the patterning and simultaneously visualising the crystal structure as part of the monitoring process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to analyse the topography and the final step being 3D visualisation through serial FIB/SEM sectioning. II) The motivation for the use of thin multiferroic films stems from the ever-growing demand for increased data storage at lesser and lesser energy consumption. The Aurivillius phase material used in this study has a high potential in this area. Yet it is necessary to show clearly that the film is really multiferroic and no second phase inclusions are present even at very low concentrations – ~0.1vol% could already be problematic. Thus, in this study a technique was developed to analyse ultra-low density inclusions in thin multiferroic films down to concentrations of 0.01%. The goal achieved was a complete structural and compositional analysis of the films which required identification of second phase inclusions (through elemental analysis EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit of 99.5% to the influence of the inclusions on the magnetic behaviour of the main phase (statistical analysis).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prenatal well-being can have significant effects on the mother and developing foetus. Positive psychological interventions, including gratitude and mindfulness, consistently demonstrate benefits for well-being in diverse populations. No research has been conducted on gratitude during pregnancy; the few studies of prenatal mindfulness interventions have demonstrated well-being benefits. The current study examined the effects of gratitude and mindfulness interventions on prenatal maternal well-being, cortisol and birth outcomes. Five studies were conducted. Study 1 was a systematic review of mindfulness intervention effects on cortisol; this highlighted potential benefits of mindfulness but the need for rigorous protocols in future research. In Study 2 a gratitude and a mindfulness intervention were developed and evaluated; findings indicate usefulness of two 3 week interventions. Study 3 examined the effects of these interventions in a randomised controlled trial (RCT) of non-pregnant women, before examining a pregnant group. No significant intervention effects were found in this study, potentially due to insufficient power and poor protocol adherence. Changes in expected directions were observed for most outcomes and the potential utility of a combined gratitude and mindfulness intervention was noted. In Study 4 a gratitude during pregnancy (GDP) scale was developed and the reliability of an existing mindfulness measure (MAAS) was examined in a pregnant group. Both scales were found to be suitable and reliable measures in pregnancy. Study 5 incorporated the findings of the previous four studies to examine of the effect of a combined mindfulness and gratitude intervention with a group of pregnant women. Forty-six participants took part in a 5-week RCT that examined intervention effects on prenatal gratitude, mindfulness, happiness, satisfaction with life, social support, prenatal stress, depression and sleep. Findings indicated that the intervention improved sleep quality and that effects for prenatal distress were approaching significance. Issues of attrition and non-compliance to study protocols were problematic and are discussed. In summary, the current thesis highlights the need for robust measurement, and intervention and cortisol sampling protocols in future research, particularly with pregnant groups. Findings also demonstrate tentative benefits of a gratitude and mindfulness intervention during pregnancy.