2 resultados para Univalent Functions with Negative Coefficients
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Research indicates that intake of sugar-sweetened beverages (SSB) may be associated with negative health consequences. However, differences between assessment methods can affect the comparability of intake data across studies. The current review aimed to identify methods used to assess SSB intake among children and adults in pan-European studies and to inform the development of the DEDIPAC (DEterminants of DIet and Physical Activity) toolbox of methods suitable for use in future European studies. A literature search was conducted using three electronic databases and by hand-searching reference lists. English-language studies of any design which assessed SSB consumption were included in the review. Studies involving two or more European countries were included in the review. Healthy, free-living children and adults. The review identified twenty-three pan-European studies which assessed intake of SSB. The FFQ was the most commonly used (n 24), followed by the 24 h recall (n 6) and diet records (n 1). There were several differences between the identified FFQ, including the definition of SSB used. In total, seven instruments that were tested for validity were selected as potentially suitable to assess SSB intake among adults (n 1), adolescents (n 3) and children (n 3). The current review highlights the need for instruments to use an agreed definition of SSB. Methods that were tested for validity and used in pan-European populations encompassing a range of countries were identified. These methods should be considered for use by future studies focused on evaluating consumption of SSB.
Resumo:
Cassava contributes significantly to biobased material development. Conventional approaches for its bio-derivative-production and application cause significant wastes, tailored material development challenges, with negative environmental impact and application limitations. Transforming cassava into sustainable value-added resources requires redesigning new approaches. Harnessing unexplored material source, and downstream process innovations can mitigate challenges. The ultimate goal proposed an integrated sustainable process system for cassava biomaterial development and potential application. An improved simultaneous release recovery cyanogenesis (SRRC) methodology, incorporating intact bitter cassava, was developed and standardized. Films were formulated, characterised, their mass transport behaviour, simulating real-distribution-chain conditions quantified, and optimised for desirable properties. Integrated process design system, for sustainable waste-elimination and biomaterial development, was developed. Films and bioderivatives for desired MAP, fast-delivery nutraceutical excipients and antifungal active coating applications were demonstrated. SRRC-processed intact bitter cassava produced significantly higher yield safe bio-derivatives than peeled, guaranteeing 16% waste-elimination. Process standardization transformed entire root into higher yield and clarified colour bio-derivatives and efficient material balance at optimal global desirability. Solvent mass through temperature-humidity-stressed films induced structural changes, and influenced water vapour and oxygen permeability. Sevenunit integrated-process design led to cost-effectiveness, energy-efficient and green cassava processing and biomaterials with zero-environment footprints. Desirable optimised bio-derivatives and films demonstrated application in desirable in-package O2/CO2, mouldgrowth inhibition, faster tablet excipient nutraceutical dissolutions and releases, and thymolencapsulated smooth antifungal coatings. Novel material resources, non-root peeling, zero-waste-elimination, and desirable standardised methodology present promising process integration tools for sustainable cassava biobased system development. Emerging design outcomes have potential applications to mitigate cyanide challenges and provide bio-derivative development pathways. Process system leads to zero-waste, with potential to reshape current style one-way processes into circular designs modelled on nature's effective approaches. Indigenous cassava components as natural material reinforcements, and SRRC processing approach has initiated a process with potential wider deployment in broad product research development. This research contributes to scientific knowledge in material science and engineering process design.