7 resultados para Ultracold traps
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
In this thesis I theoretically study quantum states of ultracold atoms. The majority of the Chapters focus on engineering specific quantum states of single atoms with high fidelity in experimentally realistic systems. In the sixth Chapter, I investigate the stability and dynamics of new multidimensional solitonic states that can be created in inhomogeneous atomic Bose-Einstein condensates. In Chapter three I present two papers in which I demonstrate how the coherent tunnelling by adiabatic passage (CTAP) process can be implemented in an experimentally realistic atom chip system, to coherently transfer the centre-of-mass of a single atom between two spatially distinct magnetic waveguides. In these works I also utilise GPU (Graphics Processing Unit) computing which offers a significant performance increase in the numerical simulation of the Schrödinger equation. In Chapter four I investigate the CTAP process for a linear arrangement of radio frequency traps where the centre-of-mass of both, single atoms and clouds of interacting atoms, can be coherently controlled. In Chapter five I present a theoretical study of adiabatic radio frequency potentials where I use Floquet theory to more accurately model situations where frequencies are close and/or field amplitudes are large. I also show how one can create highly versatile 2D adiabatic radio frequency potentials using multiple radio frequency fields with arbitrary field orientation and demonstrate their utility by simulating the creation of ring vortex solitons. In the sixth Chapter I discuss the stability and dynamics of a family of multidimensional solitonic states created in harmonically confined Bose-Einstein condensates. I demonstrate that these solitonic states have interesting dynamical instabilities, where a continuous collapse and revival of the initial state occurs. Through Bogoliubov analysis, I determine the modes responsible for the observed instabilities of each solitonic state and also extract information related to the time at which instability can be observed.
Resumo:
While a great amount of attention is being given to the development of nanodevices, both through academic research and private industry, the field is still on the verge. Progress hinges upon the development of tools and components that can precisely control the interaction between light and matter, and that can be efficiently integrated into nano-devices. Nanofibers are one of the most promising candidates for such purposes. However, in order to fully exploit their potential, a more intimate knowledge of how nanofibers interact with single neutral atoms must be gained. As we learn more about the properties of nanofiber modes, and the way they interface with atoms, and as the technology develops that allows them to be prepared with more precisely known properties, they become more and more adaptable and effective. The work presented in this thesis touches on many topics, which is testament to the broad range of applications and high degree of promise that nanofibers hold. For immediate use, we need to fully grasp how they can be best implemented as sensors, filters, detectors, and switches in existing nano-technologies. Areas of interest also include how they might be best exploited for probing atom-surface interactions, single-atom detection and single photon generation. Nanofiber research is also motivated by their potential integration into fundamental cold atom quantum experiments, and the role they can play there. Combining nanofibers with existing optical and quantum technologies is a powerful strategy for advancing areas like quantum computation, quantum information processing, and quantum communication. In this thesis I present a variety of theoretical work, which explores a range of the applications listed above. The first work presented concerns the use of the evanescent fields around a nanofiber to manipulate an existing trapping geometry and therefore influence the centre-of-mass dynamics of the atom. The second work presented explores interesting trapping geometries that can be achieved in the vicinity of a fiber in which just four modes are allowed to propagate. In a third study I explore the use of a nanofiber as a detector of small numbers of photons by calculating the rate of emission into the fiber modes when the fiber is moved along next to a regularly separated array of atoms. Also included are some results from a work in progress, where I consider the scattered field that appears along the nanofiber axis when a small number of atoms trapped along that axis are illuminated orthogonally; some interesting preliminary results are outlined. Finally, in contrast with the rest of the thesis, I consider some interesting physics that can be done in one of the trapping geometries that can be created around the fiber, here I explore the ground states of a phase separated two-component superfluid Bose-Einstein condensate trapped in a toroidal potential.
Resumo:
In this thesis I present the work done during my PhD. The Thesis is divided into two parts; in the first one I present the study of mesoscopic quantum systems whereas in the second one I address the problem of the definition of Markov regime for quantum system dynamics. The first work presented is the study of vortex patterns in (quasi) two dimensional rotating Bose Einstein condensates (BECs). I consider the case of an anisotropy trapping potential and I shall show that the ground state of the system hosts vortex patterns that are unstable. In a second work I designed an experimental scheme to transfer entanglement from two entangled photons to two BECs. This work is meant to propose a feasible experimental set up to bring entanglement from microscopic to macroscopic systems for both the study of fundamental questions (quantum to classical transition) and technological applications. In the last work of the first part another experimental scheme is presented in order to detect coherences of a mechanical oscillator which is assumed to have been previously cooled down to the quantum regime. In this regime in fact the system can rapidly undergo decoherence so that new techniques have to be employed in order to detect and manipulate their states. In the scheme I propose a micro-mechanical oscillator is coupled to a BEC and the detection is performed by monitoring the BEC with a negligible back-action on the cantilever. In the second part of the thesis I give a definition of Markov regime for open quantum dynamics. The importance of such definition comes from both the mathematical description of the system dynamics and from the understanding of the role played by the environment in the evolution of an open system. In the Markov regime the mathematical description can be simplified and the role of the environment is a passive one.
Resumo:
Distribution of soft sediment benthic fauna and the environmental factors affecting them were studied, to investigate changes across spatial and temporal scales. Investigations took place at Lough Hyne Marine Reserve using a range of methods. Data on the sedimentation rates of organic and inorganic matter were collected at monthly intervals for one year at a number of sites around the Lough, by use of vertical midwater-column sediment traps. Sedimentation of these two fractions were not coupled; inorganic matter sedimentation depended on hydrodynamic and weather factors, while the organic matter sedimentation was more complex, being dependent on biological and chemical processes in the water column. The effects of regular hypoxic episodes on benthic fauna due to a natural seasonal thermocline were studied in the deep Western Trough, using camera-equipped remotely-operated vehicle to follow transects, on a three-monthly basis over one year. In late summer, the area below the thermocline of the Western Trough was devoid of visible fauna. Decapod crustaceans were the first taxon to make use of ameliorating oxygen conditions in autumn, by darting below the thermocline depth, most likely to scavenge. This was indicated by tracks that they left on the surface of the Trough floor. Some species, most noticeably Fries’ goby Lesueurigobius friesii, migrated below the thermocline depth when conditions were normoxic and established semi-permanent burrows. Their population encompassed all size classes, indicating that this habitat was not limited to juveniles of this territorial species. Recolonisation by macrofauna and burrowing megafauna was studied during normoxic conditions, from November 2009 to May 2010. Macrofauna displayed a typical post-disturbance pattern of recolonisation with one species, the polychaete Scalibregma inflatum, occurring at high abundance levels in March 2010. In May, this population had become significantly reduced and a more diverse community was established. The abundance of burrowing infauna comprising decapods crabs and Fries’ gobies, was estimated by identifying and counting their distinctive burrow structures. While above the summer thermocline depth, burrow abundance increased in a linear fashion, below the thermocline depth a slight reduction of burrow abundance occurred in May, when oxygen conditions deteriorated again. The majority of the burrows occurring in May were made by Fries’ gobies, which are thought to encounter low oxygen concentrations in their burrows. Reduction in burrow abundance of burrowing shrimps Calocaris macandreae and Callianassa subterranea (based on descriptions of burrow structures from the literature), from March to May, might be related to their reduced activity in hypoxia, leading to loss of structural burrow maintenance. Spatial and temporal changes to macrofaunal assemblage structures were studied seasonally for one year across 5 sites in the Lough and subject to multivariate statistical analysis. Assemblage structures were significantly correlated with organic matter levels in the sediment, the amounts of organic matter settling out of the water column one month before macrofaunal sampling took place as well as current speed and temperature. This study was the first to investigate patterns and processes in the Lough soft sediment ecology across all 3 basins on a temporal and spatial scale. An investigation into the oceanographic aspects of the development, behaviour and break-down of the summer thermocline of Lough Hyne was performed in collaboration with researchers from other Irish institutions.
Resumo:
This study examined the spatial and temporal variability of dung beetle assemblages across a variety of scales e.g. from the between-pad scale (examining the effects of dung size and type) to larger spatial scales encompassing southern Ireland. Dung beetle assemblage structure as sampled by dung pad cohort samples and dung baited pitfall trapping were compared. Generally, the rank order of abundance of dung beetle species was significantly correlated between pitfall catches and cohort pad samples. Across different dung sizes, in both pitfall catches and cohort pad samples, the relative abundance of species was frequently significantly different, but the rank order of abundance of dung beetle was usually significantly correlated. Considerable variations in pitfall catches at temporal scales of a few days appeared to be closely related to weather conditions and rotational grazing. However, despite considerable variation in absolute abundances between consecutive days of sampling, assemblage structure typically remained very similar. The relationship between dung pad size and dung beetle colonisation was investigated. In field experiments in which pads of different sizes (0.25 L, 0.5 L, 1.0 L and 1.5 L) were artificially deposited, there was a positive relationship between pad size and both biomass and number of beetles colonising dung pads and pitfall traps. In addition, with one exception, the field experiments indicated a general positive relationship between dung pad size and biomass density (dung beetle biomass per unit dung volume). A laboratory experiment indicated that pat residence times of A. rufipes were significantly correlated with dung pad size. Investigation of naturally-deposited cow dung pads in the field also indicated that both larval numbers and densities were significantly correlated with dung pad size. These results were discussed in the context of theory related to aggregation and coexistence of species, and resource utilisation by organisms in ephemeral, patchy resources. The colonisation by dung beetles of dung types from native herbivores (sheep, horse and cow) was investigated in field experiments. There were significant differences between the dung types in the chemical parameters measured, and there were significant differences in abundances of dung beetles colonising the dung types. Sheep dung was typically the preferred dung type. Data from these field experiments, and from published literature, indicated that dung beetle species can display dung type preferences, in terms of comparisons of both absolute and relative abundances. In addition, data from laboratory experiments indicate that both Aphodius larval production and pat residence times tended to be higher in those dung types which were preferred by adult Aphodius in the colonisation experiments. Data from dung-baited pitfall trapping (from this and another study) at several sites (up to 180 km distant) and over a number of years (between 1991 and 1996) were used to investigate spatial and temporal variation in dung beetle assemblage structure and composition (Aphodius, Sphaeridium and Geotrupes) across a range of scales in southern Ireland. Species richness levels, species composition and rank order of abundances were very similar between the assemblages. The temporal variability between seasons within any year exceeded temporal variability between years. DCA ordinations indicated that there was a similar level of variability between assemblage structure from the between-field (~1km) to regional (~180 km) spatial scales, and between year (6 years) temporal scales. At the biogeographical spatial scale, analysis of data from the literature indicated that there was considerable variability at this scale, largely due to species turnover.
Resumo:
Silicon (Si) is the base material for electronic technologies and is emerging as a very attractive platform for photonic integrated circuits (PICs). PICs allow optical systems to be made more compact with higher performance than discrete optical components. Applications for PICs are in the area of fibre-optic communication, biomedical devices, photovoltaics and imaging. Germanium (Ge), due to its suitable bandgap for telecommunications and its compatibility with Si technology is preferred over III-V compounds as an integrated on-chip detector at near infrared wavelengths. There are two main approaches for Ge/Si integration: through epitaxial growth and through direct wafer bonding. The lattice mismatch of ~4.2% between Ge and Si is the main problem of the former technique which leads to a high density of dislocations while the bond strength and conductivity of the interface are the main challenges of the latter. Both result in trap states which are expected to play a critical role. Understanding the physics of the interface is a key contribution of this thesis. This thesis investigates Ge/Si diodes using these two methods. The effects of interface traps on the static and dynamic performance of Ge/Si avalanche photodetectors have been modelled for the first time. The thesis outlines the original process development and characterization of mesa diodes which were fabricated by transferring a ~700 nm thick layer of p-type Ge onto n-type Si using direct wafer bonding and layer exfoliation. The effects of low temperature annealing on the device performance and on the conductivity of the interface have been investigated. It is shown that the diode ideality factor and the series resistance of the device are reduced after annealing. The carrier transport mechanism is shown to be dominated by generation–recombination before annealing and by direct tunnelling in forward bias and band-to-band tunnelling in reverse bias after annealing. The thesis presents a novel technique to realise photodetectors where one of the substrates is thinned by chemical mechanical polishing (CMP) after bonding the Si-Ge wafers. Based on this technique, Ge/Si detectors with remarkably high responsivities, in excess of 3.5 A/W at 1.55 μm at −2 V, under surface normal illumination have been measured. By performing electrical and optical measurements at various temperatures, the carrier transport through the hetero-interface is analysed by monitoring the Ge band bending from which a detailed band structure of the Ge/Si interface is proposed for the first time. The above unity responsivity of the detectors was explained by light induced potential barrier lowering at the interface. To our knowledge this is the first report of light-gated responsivity for vertically illuminated Ge/Si photodiodes. The wafer bonding approach followed by layer exfoliation or by CMP is a low temperature wafer scale process. In principle, the technique could be extended to other materials such as Ge on GaAs, or Ge on SOI. The unique results reported here are compatible with surface normal illumination and are capable of being integrated with CMOS electronics and readout units in the form of 2D arrays of detectors. One potential future application is a low-cost Si process-compatible near infrared camera.
Resumo:
This PhD covers the development of planar inversion-mode and junctionless Al2O3/In0.53Ga0.47As metal-oxidesemiconductor field-effect transistors (MOSFETs). An implant activation anneal was developed for the formation of the source and drain (S/D) of the inversionmode MOSFET. Fabricated inversion-mode devices were used as test vehicles to investigate the impact of forming gas annealing (FGA) on device performance. Following FGA, the devices exhibited a subthreshold swing (SS) of 150mV/dec., an ION/IOFF of 104 and the transconductance, drive current and peak effective mobility increased by 29%, 25% and 15%, respectively. An alternative technique, based on the fitting of the measured full-gate capacitance vs gate voltage using a selfconsistent Poisson-Schrödinger solver, was developed to extract the trap energy profile across the full In0.53Ga0.47As bandgap and beyond. A multi-frequency inversion-charge pumping approach was proposed to (1) study the traps located at energy levels aligned with the In0.53Ga0.47As conduction band and (2) separate the trapped charge and mobile charge contributions. The analysis revealed an effective mobility (μeff) peaking at ~2850cm2/V.s for an inversion-charge density (Ninv) = 7*1011cm2 and rapidly decreasing to ~600cm2/V.s for Ninv = 1*1013 cm2, consistent with a μeff limited by surface roughness scattering. Atomic force microscopy measurements confirmed a large surface roughness of 1.95±0.28nm on the In0.53Ga0.47As channel caused by the S/D activation anneal. In order to circumvent the issue relative to S/D formation, a junctionless In0.53Ga0.47As device was developed. A digital etch was used to thin the In0.53Ga0.47As channel and investigate the impact of channel thickness (tInGaAs) on device performance. Scaling of the SS with tInGaAs was observed for tInGaAs going from 24 to 16nm, yielding a SS of 115mV/dec. for tInGaAs = 16nm. Flat-band μeff values of 2130 and 1975cm2/V.s were extracted on devices with tInGaAs of 24 and 20nm, respectively