6 resultados para Ultra-high energies

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic–biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructure, physical properties and oxidative stability of emulsions treated by colloid mill (CM), conventional homogenization (CH, 15 MPa) and ultra-high-pressure homogenization (UHPH, 100–300 MPa) by using different concentrations of 1, 3 and 5 g/100 g of sodium caseinate (SC), were evaluated. The application of UHPH treatment at 200 and 300 MPa resulted in emulsions that were highly stable to creaming and oxidation, especially when the protein content increased from 1 to 3 and 5 g/100 g. Further, increasing the protein content to 3 and 5 g/100 g in UHPH emulsions tended to change the rheological behavior from Newtonian to shear thinning. CH emulsions containing 1 g/100 g of protein exhibited Newtonian flow behavior with lower tendencies to creaming compared to those formulated with 3 or 5 g/100 g. This study has proved that UHPH processing at pressures (200–300 MPa) and in the presence of sufficient amount of sodium caseinate (5 g/100 g), produces emulsions with oil droplets in nano-/submicron scale with a narrow size distribution and high physical and oxidative stabilities, compared to CM and CH treatments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The research work in this thesis reports rapid separation of biologically important low molecular weight compounds by microchip electrophoresis and ultrahigh liquid chromatography. Chapter 1 introduces the theory and principles behind capillary electrophoresis separation. An overview of the history, different modes and detection techniques coupled to CE is provided. The advantages of microchip electrophoresis are highlighted. Some aspects of metal complex analysis by capillary electrophoresis are described. Finally, the theory and different modes of the liquid chromatography technology are presented. Chapter 2 outlines the development of a method for the capillary electrophoresis of (R, S) Naproxen. Variable parameters of the separation were optimized (i.e. buffer concentration and pH, concentration of chiral selector additives, applied voltage and injection condition).The method was validated in terms of linearity, precision, and LOD. The optimized method was then transferred to a microchip electrophoresis system. Two different types of injection i.e. gated and pinched, were investigated. This microchip method represents the fastest reported chiral separation of Naproxen to date. Chapter 3 reports ultra-fast separation of aromatic amino acid by capillary electrophoresis using the short-end technique. Variable parameters of the separation were optimized and validated. The optimized method was then transferred to a microchip electrophoresis system where the separation time was further reduced. Chapter 4 outlines the use of microchip electrophoresis as an efficient tool for analysis of aluminium complexes. A 2.5 cm channel with linear imaging UV detection was used to separate and detect aluminium-dopamine complex and free dopamine. For the first time, a baseline, separation of aluminium dopamine was achieved on a 15 seconds timescale. Chapter 5 investigates a rapid, ultra-sensitive and highly efficient method for quantification of histamine in human psoriatic plaques using microdialysis and ultrahigh performance liquid chromatography with fluorescence detection. The method utilized a sub-two-micron packed C18 stationary phase. A fluorescent reagent, 4-(1-pyrene) butyric acid N-hydroxysuccinimide ester was conjugated to the primary and secondary amino moieties of histamine. The dipyrene-labeled histamine in human urine was also investigated by ultrahigh pressure liquid chromatography using a C18 column with 1.8 μm particle diameter. These methods represent one of the fastest reported separations to date of histamine using fluorescence detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of ultra high speed (~20 Gsamples/s) analogue to digital converters (ADCs), and the delayed deployment of 40 Gbit/s transmission due to the economic downturn, has stimulated the investigation of digital signal processing (DSP) techniques for compensation of optical transmission impairments. In the future, DSP will offer an entire suite of tools to compensate for optical impairments and facilitate the use of advanced modulation formats. Chromatic dispersion is a very significant impairment for high speed optical transmission. This thesis investigates a novel electronic method of dispersion compensation which allows for cost-effective accurate detection of the amplitude and phase of the optical field into the radio frequency domain. The first electronic dispersion compensation (EDC) schemes accessed only the amplitude information using square law detection and achieved an increase in transmission distances. This thesis presents a method by using a frequency sensitive filter to estimate the phase of the received optical field and, in conjunction with the amplitude information, the entire field can be digitised using ADCs. This allows DSP technologies to take the next step in optical communications without requiring complex coherent detection. This is of particular of interest in metropolitan area networks. The full-field receiver investigated requires only an additional asymmetrical Mach-Zehnder interferometer and balanced photodiode to achieve a 50% increase in EDC reach compared to amplitude only detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Integrated nanowire electrodes that permit direct, sensitive and rapid electrochemical based detection of chemical and biological species are a powerful emerging class of sensor devices. As critical dimensions of the electrodes enter the nanoscale, radial analyte diffusion profiles to the electrode dominate with a corresponding enhancement in mass transport, steady-state sigmoidal voltammograms, low depletion of target molecules and faster analysis. To optimise these sensors it is necessary to fully understand the factors that influence performance limits including: electrode geometry, electrode dimensions, electrode separation distances (within nanowire arrays) and diffusional mass transport. Therefore, in this thesis, theoretical simulations of analyte diffusion occurring at a variety of electrode designs were undertaken using Comsol Multiphysics®. Sensor devices were fabricated and corresponding experiments were performed to challenge simulation results. Two approaches for the fabrication and integration of metal nanowire electrodes are presented: Template Electrodeposition and Electron-Beam Lithography. These approaches allow for the fabrication of nanowires which may be subsequently integrated at silicon chip substrates to form fully functional electrochemical devices. Simulated and experimental results were found to be in excellent agreement validating the simulation model. The electrochemical characteristics exhibited by nanowire electrodes fabricated by electronbeam lithography were directly compared against electrochemical performance of a commercial ultra-microdisc electrode. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid at single ultra-microdisc electrodes were observed at low to medium scan rates (≤ 500 mV.s-1). At nanowires, steady-state responses were observed at ultra-high scan rates (up to 50,000 mV.s-1), thus allowing for much faster analysis (20 ms). Approaches for elucidating faradaic signal without the requirement for background subtraction were also developed. Furthermore, diffusional process occurring at arrays with increasing inter-electrode distance and increasing number of nanowires were explored. Diffusion profiles existing at nanowire arrays were simulated with Comsol Multiphysics®. A range of scan rates were modelled, and experiments were undertaken at 5,000 mV.s-1 since this allows rapid data capture required for, e.g., biomedical, environmental and pharmaceutical diagnostic applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.