8 resultados para UNSATURATED ALCOHOLS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of optically active drugs and natural products contain α-functionalised ketones or simple derivatives thereof. Furthermore, chiral α-alkylated ketones are useful synthons and have found widespread use in total synthesis. The asymmetric alkylation of ketones represents one of the most powerful and longstanding procedures in organic chemistry. Surprisingly, however, only one effective methodology is available, and this involves the use of chiral auxiliaries. This is discussed in Chapter 1, which also provides a background of other key topics discussed throughout the thesis. Expanding on the existing methodology of chiral auxiliaries, Chapter 2 details the synthesis of a novel chiral auxiliary containing a pyrrolidine ring and its use in the asymmetric preparation of α-alkylated ketones with good enantioselectivity. The synthesis of racemic α-alkylated ketones as reference standards for GC chromatography is also reported in this chapter. Chapter 3 details a new approach to chiral α-alkylated ketones using an intermolecular chirality transfer methodology. This approach employs the use of simple non-chiral dimethylhydrazones and their asymmetric alkylation using the chiral diamine ligands, (+)- and (-)-sparteine. The methodology described represents the first example of an asymmetric alkylation of non-chiral azaenolates. Enantiomeric ratios up to 83 : 17 are observed. Chapter 4 introduces the first aldol-Tishchenko reaction of an imine derivative for the preparation of 1,3-aminoalcohol precursors. 1,3-Aminoalcohols can be synthesised via indirect routes involving various permutations of stepwise construction with asymmetric induction. Our approach offers an alternative highly diastereomeric route to the synthesis of this important moiety utilising N-tert-butanesulfinyl imines in an aldol-Tishchenko-type reaction. Chapter 5 details the experimental procedures for all of the above work. Chapter 6 discusses the results of a separate research project undertaken during this PhD. 2-alkyl-quinolin-4-ones and their N-substituted derivatives have several important biological functions such as the role of Pseudomonas quinolone signal (PQS) in quorum sensing. Herein, we report the synthesis of its biological precursor, 2-heptyl-4-hydroxy-quinoline (HHQ) and possible isosteres of PQS; the C-3 Cl, Br and I analogues. N-Methylation of the iodide was also feasible and the usefulness of this compound showcased in Pd-catalysed cross-coupling reactions, thus allowing access to a diverse set of biologically important molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of novel synthetic methodology for selective transformation of organic compounds is a central element underpinning organic synthesis with control of chemo-, regio- and stereoselectivity a very high priority. Reactions which can be conducted under mild reaction conditions and, ideally in an environmentally attractive manner, are particularly advantageous. The principal objective of this thesis was to explore the synthesis, reactivity and synthetic utility of a series of α,β-thio-β-chloroenones. The stereochemical features of these transformations and the potential of this novel series of compounds in the synthesis of bioactive compounds were of particular interest. In exploring the reactivity of these compounds, the key transformations included nucleophilic additions and Stille cross-coupling at the β-carbon. Chapter 1 reviews the literature relevant to the research conducted, and focuses in particular on the synthesis of β-chloroenones and related unsaturated carbonyl compounds. The synthesis of chalcone compounds from various precursors is also discussed, with particular emphasis on the use of palladium cross-coupling reactions in the preparation of these compounds. The biological activity of chalcones is also summarised in this chapter. The second chapter delineates the stereoselective synthesis of the novel α-thio-β-chloroenones from the corresponding α-thioketones in a multistep reaction cascade initiated by a NCS-mediated chlorination. A range of both alkyl and aryl β-chloroenones were prepared in this work and the oxidation of these compounds to the corresponding sulfoxides and sulfones is also outlined. The electrophilicity of the β-carbon of the enones was examined in nucleophilic addition/substitution reactions with successful access to a variety of synthetically useful novel adducts including acetals and enaminoketones. Investigation of the synthetic potential of the Stille cross-coupling reaction with the novel α-thio-β-chloroenones was explored and provided an efficient route for the synthesis of a novel series of chalcones. Most importantly this new methodology provided a new and synthetically powerful approach for carbon-carbon bond formation at the β-carbon under mild neutral conditions. A preliminary investigation into the use of these β-chloroenones as dienophiles in Diels-Alder cycloaddition reactions is also discussed in this chapter. Chapter 2 also reports the nucleophilic addition of N, O, S and C nucleophiles to previously described β-chloroacrylamides and their corresponding sulfoxide derivatives. This work builds on previous research carried out in this programme and the reactivity of these β-chloroacrylamides at the sulfide and sulfoxide level is compared. Comparison of the reactivity of the β-chloroacrylamides, in nucleophilic substitution and Stille-coupling, with that of the novel β-chloroenones is of interest. Finally, the biological activity of both the β-chloroenones and the β-chloroacrylamides in terms of cytotoxicity is summarised in Chapter 2. The final chapter, Chapter 3, details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aimed to investigate interactions of components in the high solids systems during storage. The systems included (i) lactose–maltodextrin (MD) with various dextrose equivalents at different mixing ratios, (ii) whey protein isolate (WPI)–oil [olive oil (OO) or sunflower oil (SO)] at 75:25 ratio, and (iii) WPI–oil– {glucose (G)–fructose (F) 1:1 syrup [70% (w/w) total solids]} at a component ratio of 45:15:40. Crystallization of lactose was delayed and increasingly inhibited with increasing MD contents and higher DE values (small molecular size or low molecular weight), although all systems showed similar glass transition temperatures at each aw. The water sorption isotherms of non-crystalline lactose and lactose–MD (0.11 to 0.76 aw) could be derived from the sum of sorbed water contents of individual amorphous components. The GAB equation was fitted to data of all non-crystalline systems. The protein–oil and protein–oil–sugar materials showed maximum protein oxidation and disulfide bonding at 2 weeks of storage at 20 and 40°C. The WPI–OO showed denaturation and preaggregation of proteins during storage at both temperatures. The presence of G–F in WPI–oil increased Tonset and Tpeak of protein aggregation, and oxidative damage of the protein during storage, especially in systems with a higher level of unsaturated fatty acids. Lipid oxidation and glycation products in the systems containing sugar promoted oxidation of proteins, increased changes in protein conformation and aggregation of proteins, and resulted in insolubility of solids or increased hydrophobicity concomitantly with hardening of structure, covalent crosslinking of proteins, and formation of stable polymerized solids, especially after storage at 40°C. We found protein hydration transitions preceding denaturation transitions in all high protein systems and also the glass transition of confined water in protein systems using dynamic mechanical analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antifungal compounds produced by Lactic acid bacteria (LAB) metabolites can be natural and reliable alternative for reducing fungal infections pre- and post-harvest with a multitude of additional advantages for cereal-base products. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. This thesis includes an overview of the impact fungi have on aspects of the cereal food chain. The applicability of LAB in plant protection and cereal industry is discussed in detail. Specific case studies include Fusarium head blight, and the impact of fungi in the malting and baking industry. The impact of Fusarium culmorum infected raw barley on the final malt quality was part of the investigation. In vitro infected barley grains were fully characterized. The study showed that the germinative energy of infected barley grains decreased by 45% and grains accumulated 199 μg.kg-1 of deoxynivalenol (DON). Barley grains were subsequently malted and fully characterized. Fungal biomass increased during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Infected malt grains revealed extreme structural changes due to proteolytic, (hemi)-cellulolytic and starch degrading activity of the fungi, this led to increased friability and fragmentation. Infected grains also had higher protease and β-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower β-glucan content. Malt loss was over 27% higher in infected malt when compared to the control. The protein compositional changes and respective enzymatic activity of infected barley and respective malt were characterized using a wide range of methods. F. culmorum infected barley grains showed an increase in proteolytic activity and protein extractability. Several metabolic proteins decreased and increased at different rates during infection and malting, showing a complex F. culmorum infection interdependence. In vitro F. culmorum infected malt was used to produce lager beer to investigate changes caused by the fungi during the brewing processes and their effect on beer quality attributes. It was found, that the wort containing infected malt had a lower pH, a higher FAN, higher β-glucan and a 45% increase in the purging rate, and led to premature yeast flocculation. The beer produced with infected malt (IB) had also a significantly different amino acid profile. IB flavour characterization revealed a higher concentration of esters, fusel alcohols, fatty acids, ketones, and dimethylsulfide, and in particular, acetaldehyde, when compared to the control. IB had a greater proportion of Strecker aldehydes and Maillard products contributing to an increased beer staling character. IB resulted in a 67% darker colour with a trend to better foam stability. It was also found that 78% of the accumulated mycotoxin deoxynivalenol in the malt was transferred into beer. A LAB cell-freesupernatant (cfs), produced in wort-base substrate, was investigated for its ability to inhibit Fusarium growth during malting. Wort was a suitable substrate for LAB exhibiting antifungal activity. Lactobacillus amylovorus DSM19280 inhibited 104 spores.mL-1 for 7 days, after 120 h of fermentation, while Lactobacillus reuteri R29 inhibited 105 spores.mL-1 for 7 days, after 48 h of fermentation. Both LAB cfs had significant different organic acid profiles. Acid-base antifungal compounds were identified and, phenyllactic, hydroxy-phenyllactic, and benzoic acids were present in higher concentrations when compared to the control. A 3 °P wort substrate inoculated With L. reuteri R29 (cfs) was applied in malting and successfully inhibited Fusarium growth by 23%, and mycotoxin DON by 80%. Malt attributes resulted in highly modified grains, lower pH, higher colouration, and higher extract yield. The implementation of selected LAB producing antifungal compounds can be used successfully in the malting process to reduce mould growth and mycotoxin production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing appreciation of the polymicrobial nature of bacterial infections associated with Cystic Fibrosis (CF) and of the important role for interactions in influencing bacterial virulence and response to therapy. Patients with CF are co-infected with Pseudomonas aeruginosa, Burkholderia cenocepacia and Stenotrophomonas maltophilia. These latter bacteria produce signal molecules of the diffusible signal factor (DSF) family, which are cis-2-unsaturated fatty acids. Previous studies showed that DSF from S. maltophilia leads to altered biofilm formation and increased tolerance to antibiotics in P. aeruginosa and that these responses require the P. aeruginosa sensor kinase PA1396. The work in this thesis aims of further elucidate the influence and mechanism of DSF signalling on P. aeruginosa and examine the role that such interspecies signalling play in infection of the CF airway. Next generation sequencing technologies targeting the 16S ribosomal RNA gene were applied to DNA and RNA isolated from sputum taken from cohorts of CF and non-CF subjects to characterise the bacterial community. In parallel, metabolomics analysis of sputum provided insight into the environment of the CF airway. This analysis revealed a number of observations including; that differences in metabolites occur in sputum taken from clinically stable CF patients and those with exacerbation and DNA- and RNA-based methods suggested that a strong relationship existed between the abundance of specific strict anaerobes and fluctuations in the level of metabolites during exacerbation. DSF family signals were also detected in the sputum and a correlation with the presence of DSFproducing organisms was observed. To examine the signal transduction mechanisms used by P. aeruginosa, bioinformatics with site directed mutagenesis were employed to identify signalling partners for PA1396. A pathway suggesting a role for a number of proteins in the regulation of several factors following DSF recognition by PA1396 were observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary focus of this thesis was the asymmetric peroxidation of α,β-unsaturated aldehydes and the development of this methodology to include the synthesis of bioactive chiral 1,2-dioxane and 1,2-dioxalane rings. In Chapter 1 a review detailing the new and improved methods for the acyclic introduction of peroxide functionality to substrates over the last decade was discussed. These include a detailed examination of metal-mediated transformations, chiral peroxidation using organocatalytic means and the improvements in methodology of well-established peroxidation pathways. The second chapter discusses the method by which peroxidation of our various substrates was attempted and the optimisation studies associated with these reactions. The method by which the enantioselectivity of our β-peroxyaldehydes was determined is also reviewed. Chapters 3 and 4 focus on improving the enantioselectivity associated with our asymmetric peroxidation reaction. A comprehensive analysis exploring the effect of solvent, concentration and temperature on enantioselectivity was examined. The effect that different catalytic systems have on enantioselectivity and reactivity was also investigated in depth. Chapter 5 details the various transformations that β-peroxyaldehydes can undergo and the manipulation of these transformations towards the establishment of several routes for the formation of chiral 1,2-dioxane and 1,2-dioxalane rings. Chapter 6 details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geiparvarin is a natural product which contains both a 3(2H)-furanone and a coumarin moiety in its structure. The aim of this project was to investigate the use of Pd(0)-mediated C–C bondforming reactions to produce structurally modified geiparvarins. Chapter 1 consists of a review of the relevant literature, including that pertaining to the syntheses of selected naturally occurring 3(2H)-furanones. The known syntheses of geiparvarin and closely related analogues are examined, along with the documented biological activity of these compounds. The synthetic routes which allow access to 4-substituted-3(2H)-furanones are also described. Chapter 2 describes in detail the synthesis of a variety of novel structurally modified geiparvarins by two complementary routes, both approaches utilising Pd(0)-mediated crosscoupling reactions, and discusses the characterisation of these compounds. The preparation of 5-ethyl-3(2H)-furanones is described, as is their incorporation into geiparvarin and the corresponding 5″-alkylgeiparvarin analogues via formation and dehydration of intermediate alcohols. Halogenation of 5-ethyl-3(2H)-furanones and the corresponding geiparvarin derivatives is discussed, along with further reactions of the resulting halides. Preparation of 3″-arylgeiparvarins involving both Suzuki–Miyura and Stille reactions, using the appropriate intermediate iodides and bromides, is described. The application of Stille and Heck conditions to give 3″-ethenylgeiparvarin analogues and Sonogashira conditions to produce 3″-ethynylgeiparvarin analogues, using the relevant intermediate iodides, is also extensively outlined. Chapter 3 contains all of the experimental data and details of the synthetic methods employed for the compounds prepared during the course of this research. All novel compounds prepared were fully characterised using NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis; the details of which are included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous silicon has become the material of choice for many technologies, with major applications in large area electronics: displays, image sensing and thin film photovoltaic cells. This technology development has occurred because amorphous silicon is a thin film semiconductor that can be deposited on large, low cost substrates using low temperature. In this thesis, classical molecular dynamics and first principles DFT calculations have been performed to generate structural models of amorphous and hydrogenated amorphous silicon and interfaces of amorphous and crystalline silicon, with the ultimate aim of understanding the photovoltaic properties of core-shell crystalline amorphous Si nanowire structures. We have shown, unexpectedly, from the simulations, that our understanding of hydrogenated bulk a-Si needs to be revisited, with our robust finding that when fully saturated with hydrogen, bulk a-Si exhibits a constant optical energy gap, irrespective of the hydrogen concentration in the sample. Unsaturated a-Si:H, with a lower than optimum hydrogen content, shows a smaller optical gap, that increases with hydrogen content until saturation is reached. The mobility gaps obtained from an analysis of the electronic states show similar behavior. We also obtained that the optical and mobility gaps show a volcano curve as the H content is varied from 7% (undersaturation) to 18% (mild oversaturation). In the case of mild over saturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structures shows the extra H atoms in this case form a bridge between neighboring silicon atoms which increases the corresponding Si-Si distance and promotes bond length disorder in the sample. That has the potential to enhance the Staebler-Wronski effect. Planar interface models of amorphous-crystalline silicon have been generated in Si (100), (110) and (111) surfaces. The interface models are characterized by structure, RDF, electronic density of states and optical absorption spectrum. We find that the least stable (100) surface will result in the formation of the thickest amorphous silicon layer, while the most stable (110) surface forms the smallest amorphous region. We calculated for the first time band offsets of a-Si:H/c-Si heterojunctions from first principles and examined the influence of different surface orientations and amorphous layer thickness on the offsets and implications for device performance. The band offsets depend on the amorphous layer thickness and increase with thickness. By controlling the amorphous layer thickness we can potentially optimise the solar cell parameters. Finally, we have successfully generated different amorphous layer thickness of the a-Si/c-Si and a-Si:H/c-Si 5 nm nanowires from heat and quench. We perform structural analysis of the a-Si-/c-Si nanowires. The RDF, Si-Si bond length distributions, and the coordination number distributions of amorphous regions of the nanowires reproduce similar behaviour compared to bulk amorphous silicon. In the final part of this thesis we examine different surface terminating chemical groups, -H, - OH and –NH2 in (001) GeNW. Our work shows that the diameter of Ge nanowires and the nature of surface terminating groups both play a significant role in both the magnitude and the nature of the nanowire band gaps, allowing tuning of the band gap by up to 1.1 eV. We also show for the first time how the nanowire diameter and surface termination shifts the absorption edge in the Ge nanowires to longer wavelengths. Thus, the combination of nanowire diameter and surface chemistry can be effectively utilised to tune the band gaps and thus light absorption properties of small diameter Ge nanowires.