3 resultados para UBIQUITIN LIGASE CHIP
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic sensing capsules are an example of these. In none of the diagnostic sensing capsules, is the sensor’s first level packaging achieved via Flip Chip Over Hole (FCOH) method using Anisotropic Conductive Adhesive (ACA). In a capsule application with direct access sensor (DAS), ACA not only provides the electrical interconnection but simultaneously seals the interconnect area and the underlying electronics. The development showed that the ACA FCOH was a viable option for the DAS interconnection. Adequate adhesive formed a strong joint that withstood a shear stress of 120N/mm2 and a compressive stress of 6N required to secure the final sensor assembly in place before encapsulation. Electrical characterization of the ACA joint in a fluid environment showed that the ACA was saturated with moisture and that the ions in the solution actively contributed to the leakage current, characterized by the varying rate of change of conductance. Long term hygrothermal aging of the ACA joint showed that a thermal strain of 0.004 and a hygroscopic strain of 0.0052 were present and resulted in a fatigue like process. In-vitro tests showed that high temperature and acidity had a deleterious effect of the ACA and its joint. It also showed that the ACA contact joints positioned at around or over 1mm would survive the gastrointestinal (GI) fluids and would be able to provide a reliable contact during the entire 72hr of the GI transit time. A final capsule demonstrator was achieved by successfully integrating the DAS, the battery and the final foldable circuitry into a glycerine capsule. Final capsule soak tests suggested that the silicone encapsulated system could survive the 72hr gut transition.
Resumo:
The presenilins are the catalytic component of the gamma-secretase protease complex, involved in the regulated intramembrane proteolysis of numerous type-1 transmembrane proteins, including Amyloid precursor protein (APP) and Notch. In addition to their role in the γ-secretase complex the presenilins are involved in a number of γ-secretase independent functions such as calcium homeostasis, apoptosis, inflammation and protein trafficking. Presenilin function is known to be regulated through posttranslational modifications like endoproteolysis, phosphorylation and ubiquitination. Using a bioinformatics and protein sequence analysis approach this lab has identified a putative ubiquitin binding CUE domain in the presenilins. The aim of this project was to characterise the function of the presenilin CUE domains. Firstly, the presenilins are shown to contain a functional ubiquitin-binding CUE domain that preferentially binds to K63-linked polyubiquitin chains. The PS1 CUE domain is shown to be dispensable for PS1 endoproteolysis and γ-secretase mediated cleavage of APP, Notch and IL-1R1. This suggests the PS1 CUE domain is involved in a γ-secretase independent PS1 function. Our hypothesis is that the PS1 CUE domain is involved in regulating PS1’s intermolecular protein-protein interactions or intramolecular PS1:PS1 interactions. Here the PS1 CUE domain is shown to be dispensable for the interaction of PS1 and the K63-linked polyubiquitinated PS1 interacting proteins P75NTR, IL-1R1, TRAF6, TRAF2 and RIP1. To further investigate PS1 CUE domain function a mass spectrometry proteomics based approach is used to identify PS1 CUE domain interacting proteins. This proteomics approach demonstrated that the PS1 CUE domain is not required for PS1 dimerization. Instead a number of proteins thatinteract with the PS1 CUE domain are identified as well as proteins whose interaction with PS1 is downregulated by the presence of the PS1 CUE domain. Bioinformatic analysis of these proteins suggests possible roles for the PS1 CUE domain in regulating cell signalling, ubiquitination or cellular trafficking.
Resumo:
The vast majority of secreted and membrane proteins are translated and folded at the endoplasmic reticulum (ER), where a sophisticated quality control mechanism ensures that only correctly folded proteins exit the ER and traffic to their final destinations. On the other hand, proteins that persistently misfold are eliminated through a process known as ER associated degradation (ERAD). This involves retrotranslocation of the misfolded protein through the ER membrane, and ubiquitination in advance of degradation by cytosolic proteasomes. The process of ERAD is best described in yeast where ubiquitin conjugating enzymes Ubc6p and Ubc7p function with a limited number of E3 ubiquitin ligases to ubiquitinate misfolded proteins. Interestingly, although the mechanistic principles of ERAD have been conserved through evolution, there is increasing evidence that homologues of the yeast enzymes have gained divergent roles and novel regulatory functions in higher eukaryotes, meaning that the process in humans is more complex and involves a larger repertoire of participating proteins. Two homologues of Ubc6p have been described in humans, and have been named as Ubc6 (UBE2J2) and Ubc6e (UBE2J1). However, little work has been done on these enzymes and thus our main objective of this study was to progress the functional characterisation of these ERAD E2 conjugating enzymes. Our studies included a detailed analysis of conditions whereby these proteins are stabilised and degraded. We’ve also explored the different molecular signalling pathways that induced changes on their steady state protein levels. Furthermore, Ubc6e has a phosphorylatable serine residue at position 184. Thus, our studies also involved delineating the signalling kinases that phosphorylate Ubc6e and examining its function in ERAD. Our studies confirm that the E2 Ubc enzymes are regulated posttranslationally and may have important implications in the regulation of ERAD.