2 resultados para Trypsin

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, the potential to positively modulate human health through dietary approaches has received considerable attention. Bioactive peptides which are released during the hydrolysis or fermentation of food proteins or following digestion may exert beneficial physiological effects in vivo. The aim of this work was to isolate, characterise and evaluate Angiotensin-І-converting enzyme (ACE-І) inhibitory, antimicrobial and antioxidant peptides from the bovine myofibrillar proteins actin and myosin. In order to generate these peptides, the myofibrillar proteins actin and myosin were hydrolysed with digestive enzymes pepsin, trypsin and α-chymotrypsin, or with the industrial thermolysin-like enzyme “Thermoase”, Amano Inc. It was found that each hydrolysate generated contained peptides which possessed ACE inhibitory, antioxidant and antimicrobial activity. The peptides responsible in part for the observed ACE inhibitory, antioxidant and antimicrobial activity of a number of hydrolysates were isolated using the method of RP-HPLC and the bioactive peptides contained within each active fraction was determined using either MALDI-TOF MS/MS or N-terminal peptide sequencing. During the course of this thesis six ACE inhibitory and five antimicrobial peptides were identified. It was determined that the reported antioxidant activity was a direct result of a number of peptides working in synergy with each other. The IC50 values of the six ACE inhibitory peptides ranged in values of 6.85 to 75.7 µM which compare favourably to values previously reported for other food derived ACE inhibitory peptides, particularly the well known milk peptides IPP and VPP, IC50 values of 5 and 9 µM respectively. All five antimicrobial peptides identified in this thesis displayed activity against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Listeria innocua with MIC values ranging from 0.625 to10 mM. The activity of each antimicrobial peptide was strain specific. Furthermore the role and importance of charged amino acids to the activity of antimicrobial peptides was also determined. Generally the removal of charged amino acids from the sequence of antimicrobial peptides resulted in a loss of antimicrobial activity. In conclusion, this thesis revealed that a range of bioactive peptides exhibiting ACE inhibitory, antioxidant and antimicrobial activities were encrypted in bovine myofibrillar proteins that could be released using digestive and industrial enzymes. Finally enzymatic hydrolysates of muscle proteins could potentially be incorporated into functional foods; however, the potential health benefits would need to be proven in human clinical studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacteriocin class of antimicrobial peptides have emerged as a viable alternative to at least partially fill the void created by the end of the golden age of antibiotic discovery. Along with this potential use in a clinical setting, bacteriocins also play an important role as bio-preservatives in the food industry. This thesis focuses on a specific bacteriocin group, the lantibiotics (Lanthionine-containing antibiotics). Their numerous methods of appliance in a food setting and how their gene-encoded nature can be modified to improve on overall bioactivity and functionality are explored here. The use of a lantibiotic (lacticin 3147) producing starter culture to control the Crohn’s disease-linked pathogen Mycobacterium paratuberculosis was assessed in a raw milk cheese. Although lacticin 3147 production did not effectively control the pathogen, the study provided an impetus to employ a variety of PCR-based mutagenesis techniques with a view to the creation of enhanced lantibiotic derivatives. Through the use of these techniques, a number of enhanced derivatives were generated from the ‘hinge’ region of the nisin peptide. Furthermore, a derivative in which the three hinge amino acids were replaced with three alanines represents the first enhanced derivative of nisin to have been designed through a rational process. This derivative also formed the backbone for the creation of an active, trypsin resistant, variant. Through the employment of further mutagenesis methods a derivative was created with potential use as an oral anti-bacterial in the future. Finally a number of lead nisin derivatives were investigated to assess their anti- Streptococcus agalactiae ability, a mastitis associated pathogen. Also a system was developed to facilitate the large scale production of these candidates, or other nisin derivatives, from dairy substrates.