3 resultados para Trophic index

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop a methodology, based on satellite remote sensing, to estimate the vegetation Start of Season (SOS) across the whole island of Ireland on an annual basis. This growing body of research is known as Land Surface Phenology (LSP) monitoring. The SOS was estimated for each year from a 7-year time series of 10-day composited, 1.2 km reduced resolution MERIS Global Vegetation Index (MGVI) data from 2003 to 2009, using the time series analysis software, TIMESAT. The selection of a 10-day composite period was guided by in-situ observations of leaf unfolding and cloud cover at representative point locations on the island. The MGVI time series was smoothed and the SOS metric extracted at a point corresponding to 20% of the seasonal MGVI amplitude. The SOS metric was extracted on a per pixel basis and gridded for national scale coverage. There were consistent spatial patterns in the SOS grids which were replicated on an annual basis and were qualitatively linked to variation in landcover. Analysis revealed that three statistically separable groups of CORINE Land Cover (CLC) classes could be derived from differences in the SOS, namely agricultural and forest land cover types, peat bogs, and natural and semi-natural vegetation types. These groups demonstrated that managed vegetation, e.g. pastures has a significantly earlier SOS than in unmanaged vegetation e.g. natural grasslands. There was also interannual spatio-temporal variability in the SOS. Such variability was highlighted in a series of anomaly grids showing variation from the 7-year mean SOS. An initial climate analysis indicated that an anomalously cold winter and spring in 2005/2006, linked to a negative North Atlantic Oscillation index value, delayed the 2006 SOS countrywide, while in other years the SOS anomalies showed more complex variation. A correlation study using air temperature as a climate variable revealed the spatial complexity of the air temperature-SOS relationship across the Republic of Ireland as the timing of maximum correlation varied from November to April depending on location. The SOS was found to occur earlier due to warmer winters in the Southeast while it was later with warmer winters in the Northwest. The inverse pattern emerged in the spatial patterns of the spring correlates. This contrasting pattern would appear to be linked to vegetation management as arable cropping is typically practiced in the southeast while there is mixed agriculture and mostly pastures to the west. Therefore, land use as well as air temperature appears to be an important determinant of national scale patterns in the SOS. The TIMESAT tool formed a crucial component of the estimation of SOS across the country in all seven years as it minimised the negative impact of noise and data dropouts in the MGVI time series by applying a smoothing algorithm. The extracted SOS metric was sensitive to temporal and spatial variation in land surface vegetation seasonality while the spatial patterns in the gridded SOS estimates aligned with those in landcover type. The methodology can be extended for a longer time series of FAPAR as MERIS will be replaced by the ESA Sentinel mission in 2013, while the availability of full resolution (300m) MERIS FAPAR and equivalent sensor products holds the possibility of monitoring finer scale seasonality variation. This study has shown the utility of the SOS metric as an indicator of spatiotemporal variability in vegetation phenology, as well as a correlate of other environmental variables such as air temperature. However, the satellite-based method is not seen as a replacement of ground-based observations, but rather as a complementary approach to studying vegetation phenology at the national scale. In future, the method can be extended to extract other metrics of the seasonal cycle in order to gain a more comprehensive view of seasonal vegetation development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of obesity worldwide has increased dramatically over the last few decades. Poor dietary habits and low levels of exercise in adolescence are often maintained into adulthood where they can impact on the incidence of obesity and chronic diseases. A 3-year longitudinal study of anthropometric, dietary and exercise parameters was carried out annually (2005 - 2007) in 3 Irish secondary schools. Anthropometric measurements were taken in each year and analysed longitudinally. Overweight and obesity were at relatively low levels in these adolescents. Height, weight, BMI, waist and hip circumferences and TST increased significantly over the 3 years. Waist-to-hip ratio (WHR) decreased significantly over time. Boys were significantly taller than girls across the 3 years. A 3-day weighed food diary was used to assess food intake by the adolescents. Analysis of dietary intake data was determined using WISP©. Mean daily energy and nutrient intakes were reported. Mean daily energy and macronutrient intakes were analysed longitudinally. The adolescents’ diet was characterised by relatively high saturated fat intakes and insufficient fruit and vegetable consumption. The dietary pattern did not change significantly over the 3 years. Boys consumed more energy than girls over the study period. A validated questionnaire was used to assess physical activity and sedentary activity levels. Boys were substantially more active and had higher energy expenditure estimates than girls throughout the study. A significant longitudinal decrease in physical activity levels among the adolescents was observed. Both genders spent more than the recommended amount of time (hrs/day) pursing sedentary activities. The dietary pattern in these Irish adolescents is relatively poor. Of additional concern is the overall longitudinal decrease in physical activity levels. Promoting consumption of a balanced diet and increased exercise levels among adolescents will help to reduce future public health care costs due to weight-related diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the role of marine mammals in specific ecosystems and their interactions with fisheries involves, inter alia, an understanding of their diet and dietary requirements. In this thesis, the foraging ecology of seven marine mammal species that regularly occur in Irish waters was investigated by reconstructing diet using hard parts from digestive tracts and scats. Of the species examined, two (striped and Atlantic white-sided dolphin) can be considered offshore species or species inhabiting neritic waters, while five others usually inhabit more coastal areas (white-beaked dolphin, harbour porpoise, harbour seal and grey seal); the last species studied was the bottlenose dolphin whose population structure is more complex, with coastal and offshore populations. A total of 13,028 prey items from at least 81 different species (62 fish species, 14 cephalopods, four crustaceans, and a tunicate) were identified. 28% of the fish species were identified using bones other than otoliths, highlighting the importance of using all identifiable structures to reconstruct diet. Individually, each species of marine mammal presented a high diversity of prey taxa, but the locally abundant Trisopterus spp. were found to be the most important prey item for all species, indicating that Trisopterus spp. is probably a key species in understanding the role of these predators in Irish waters. In the coastal marine mammals, other Gadiformes species (haddock, pollack, saithe, whiting) also contributed substantially to the diet; in contrast, in pelagic or less coastal marine mammals, prey was largely comprised of planktivorous fish, such as Atlantic mackerel, horse mackerel, blue whiting, and mesopelagic prey. Striped dolphins and Atlantic white-sided dolphins are offshore small cetaceans foraging in neritic waters. Differences between the diet of striped dolphins collected in drift nets targeting tuna and stranded on Irish coasts showed a complex foraging behaviour; the diet information shows that although this dolphin forages mainly in oceanic waters it may occasionally forage on the continental shelf, feeding on available prey. The Atlantic white-sided dolphin diet showed that this species prefers to feed over the continental edge, where planktivorous fish are abundant. Some resource partitioning was found in bottlenose dolphins in Irish waters consistent with previous genetic and stable isotope analysis studies. Bottlenose dolphins in Irish waters appears to be generalist feeders consuming more than 30 prey species, however most of the diet comprised a few locally abundant species, especially gadoid fish including haddock/pollack/saithe group and Trisopterus spp., but the contribution of Atlantic hake, conger eels and the pelagic planktivorous horse mackerel were also important. Stomach content information suggests that three different feeding behaviours might occur in bottlenose dolphin populations in Irish waters; firstly a coastal behaviour, with animals feeding on prey that mainly inhabit areas close to the coast; secondly an offshore behaviour where dolphins feed on offshore species such as squid or mesopelagic fish; and a third more complex behaviour that involves movements over the continental shelf and close to the shelf edge. The other three coastal marine mammal species (harbour porpoise, harbour seal and grey seal) were found to be feeding on similar prey and competition for food resources among these sympatric species might occur. Both species of seals were found to have a high overlap (more than 80%) in their diet composition, but while grey seals feed on large fish (>110mm), harbour seals feed mostly on smaller fish (<110mm), suggesting some spatial segregation in foraging. Harbour porpoises and grey seals are potentially competing for the same food resource but some differences in prey species were found and some habitat partitioning might occur. Direct interaction (by catch) between dolphins and fisheries was detected in all species. Most of the prey found in the stomach contents from both stranded and by catch dolphins were smaller sizes than those targeted by commercial fisheries. In fact, the total annual food consumption of the species studied was found to be very small (225,160 tonnes) in comparison to fishery landings for the same area (~2 million tonnes). However, marine mammal species might be indirectly interacting with fisheries, removing forage fish. Incorporating the dietary information obtained from the four coastal species, an ECOPATH food web model was established for the Irish Sea, based on data from 2004. Five trophic levels were found, with bottlenose dolphins and grey and harbour seals occurring at the highest trophic level. A comparison with a previous model based on 1973 data suggests that while the overall Irish Sea ecosystem appears to be “maturing”, some indices indicate that the 2004 fishery was less efficient and was targeting fish at higher trophic levels than in 1973, which is reflected in the mean trophic level of the catch. Depletion or substantial decrease of some of the Irish Sea fish stocks has resulted in a significant decline in landings in this area. The integration of diet information in mass-balance models to construct ecosystem food-webs will help to understand the trophic role of these apex predators within the ecosystem.