5 resultados para Transport phenomena in semiconductors

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to find the rates of inelastic intravalley and intervalley n-type carrier scattering in Si1-xGex alloys. Scattering parameters for all relevant Delta and L intra- and intervalley scattering are calculated. The short-wavelength acoustic and the optical phonon modes in the alloy are computed using the random mass approximation, with interatomic forces calculated in the virtual crystal approximation using density functional perturbation theory. Optical phonon and intervalley scattering matrix elements are calculated from these modes of the disordered alloy. It is found that alloy disorder has only a small effect on the overall inelastic intervalley scattering rate at room temperature. Intravalley acoustic scattering rates are calculated within the deformation potential approximation. The acoustic deformation potentials are found directly and the range of validity of the deformation potential approximation verified in long-wavelength frozen phonon calculations. Details of the calculation of elastic alloy scattering rates presented in an earlier paper are also given. Elastic alloy disorder scattering is found to dominate over inelastic scattering, except for almost pure silicon (x approximate to 0) or almost pure germanium (x approximate to 1), where acoustic phonon scattering is predominant. The n-type carrier mobility, calculated from the total (elastic plus inelastic) scattering rate, using the Boltzmann transport equation in the relaxation time approximation, is in excellent agreement with experiments on bulk, unstrained alloys..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p-type carrier scattering rate due to alloy disorder in Si1-xGex alloys is obtained from first principles. The required alloy scattering matrix elements are calculated from the energy splitting of the valence bands, which arise when one average host atom is replaced by a Ge or Si atom in supercells containing up to 128 atoms. Alloy scattering within the valence bands is found to be characterized by a single scattering parameter. The hole mobility is calculated from the scattering rate using the Boltzmann transport equation in the relaxation time approximation. The results are in good agreement with experiments on bulk, unstrained alloys..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to find the rates of intravalley and intervalley n-type carrier scattering due to alloy disorder in Si1-xGex alloys. The required alloy scattering matrix elements are calculated from the energy splitting of nearly degenerate Bloch states which arises when one average host atom is replaced by a Ge or Si atom in supercells containing up to 128 atoms. Scattering parameters for all relevant Delta and L intravalley and intervalley alloy scattering are calculated. Atomic relaxation is found to have a substantial effect on the scattering parameters. f-type intervalley scattering between Delta valleys is found to be comparable to other scattering channels. The n-type carrier mobility, calculated from the scattering rate using the Boltzmann transport equation in the relaxation time approximation, is in excellent agreement with experiments on bulk, unstrained alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is focused on the application of numerical atomic basis sets in studies of the structural, electronic and transport properties of silicon nanowire structures from first-principles within the framework of Density Functional Theory. First we critically examine the applied methodology and then offer predictions regarding the transport properties and realisation of silicon nanowire devices. The performance of numerical atomic orbitals is benchmarked against calculations performed with plane waves basis sets. After establishing the convergence of total energy and electronic structure calculations with increasing basis size we have shown that their quality greatly improves with the optimisation of the contraction for a fixed basis size. The double zeta polarised basis offers a reasonable approximation to study structural and electronic properties and transferability exists between various nanowire structures. This is most important to reduce the computational cost. The impact of basis sets on transport properties in silicon nanowires with oxygen and dopant impurities have also been studied. It is found that whilst transmission features quantitatively converge with increasing contraction there is a weaker dependence on basis set for the mean free path; the double zeta polarised basis offers a good compromise whereas the single zeta basis set yields qualitatively reasonable results. Studying the transport properties of nanowire-based transistor setups with p+-n-p+ and p+-i-p+ doping profiles it is shown that charge self-consistency affects the I-V characteristics more significantly than the basis set choice. It is predicted that such ultrascaled (3 nm length) transistors would show degraded performance due to relatively high source-drain tunnelling currents. Finally, it is shown the hole mobility of Si nanowires nominally doped with boron decreases monotonically with decreasing width at fixed doping density and increasing dopant concentration. Significant mobility variations are identified which can explain experimental observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the properties of strained tetrahedrally bonded materials are explored theoretically, with special focus on group-III nitrides. In order to do so, a multiscale approach is taken: accurate quantitative calculations of material properties are carried out in a quantum first-principles frame, for small systems. These properties are then extrapolated and empirical methods are employed to make predictions for larger systems, such as alloys or nanostructures. We focus our attention on elasticity and electric polarization in semiconductors. These quantities serve as input for the calculation of the optoelectronic properties of these systems. Regarding the methods employed, our first-principles calculations use highly- accurate density functional theory (DFT) within both standard Kohn-Sham and generalized (hybrid functional) Kohn-Sham approaches. We have developed our own empirical methods, including valence force field (VFF) and a point-dipole model for the calculation of local polarization and local polarization potential. Our local polarization model gives insight for the first time to local fluctuations of the electric polarization at an atomistic level. At the continuum level, we have studied composition-engineering optimization of nitride nanostructures for built-in electrostatic field reduction, and have developed a highly efficient hybrid analytical-numerical staggered-grid computational implementation of continuum elasticity theory, that is used to treat larger systems, such as quantum dots.