2 resultados para Transform infra-red spectroscopy

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we use density functional theory corrected for on-site Coulomb interactions (DFT + U) and hybrid DFT (HSE06 functional) to study the defects formed when the ceria (110) surface is doped with a series of trivalent dopants, namely, Al3+, Sc3+, Y3+, and In 3+. Using the hybrid DFT HSE06 exchange-correlation functional as a benchmark, we show that doping the (110) surface with a single trivalent ion leads to formation of a localized MCe / + O O • (M = the 3+ dopant), O- hole state, confirming the description found with DFT + U. We use DFT + U to investigate the energetics of dopant compensation through formation of the 2MCe ′ +VO ̈ defect, that is, compensation of two dopants with an oxygen vacancy. In conjunction with earlier work on La-doped CeO2, we find that the stability of the compensating anion vacancy depends on the dopant ionic radius. For Al3+, which has the smallest ionic radius, and Sc3+ and In3+, with intermediate ionic radii, formation of a compensating oxygen vacancy is stable. On the other hand, the Y3+ dopant, with an ionic radius close to that of Ce4+, shows a positive anion vacancy formation energy, as does La3+, which is larger than Ce4+ (J. Phys.: Condens. Matter 2010, 20, 135004). When considering the resulting electronic structure, in Al3+ doping, oxygen hole compensation is found. However, Sc 3+, In3+, and Y3+ show the formation of a reduced Ce3+ cation and an uncompensated oxygen hole, similar to La3+. These results suggest that the ionic radius of trivalent dopants strongly influences the final defect formed when doping ceria with 3+ cations. In light of these findings, experimental investigations of these systems will be welcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.