2 resultados para Toxic Material

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This ethnographic study makes a number of original contributions to the consumer identity projects and the marketplace cultures dimensions of consumer culture theory research. This study introduces the notion of the brand-orientated play-community, a novel consumption community form, which displays, as locus, a desire to play. This contributes to our understanding of the fluid relationship between subcultures of consumption, consumer tribes, and brand community. It was found that the brand-orientated play-community’s prime celebration, conceptualised as the ‘branded carnival’, displays characteristics of the archetypal carnival. The community access carnivalistic life and a world-upside-down ethos via the use and misuse of marketplace resources. The branded carnival is further supported by the community’s enactment of ‘toxic play’, which entails abnormal alcohol consumption, black market illegal resources, edgework activities, hegemonic masculinity and upsetting the public. This play-community is discussed in terms of a hyper-masculine playpen, as the play enacted has a direct relationship with the enactment of strong masculine roles. It was found that male play-ground members enact the extremes of contrasting masculine roles as a means to subvert the calculated and sedate ‘man-of-action-hero’ synthesis. Carnivals are unisex, and hence, women have begun entering the play-ground. Female members have successfully renegotiated their role within the community, from playthings to players – they have achieved player equality, which within the liminoid zone is more powerful than gender equality. However, while toxic play is essential to the maintenance of collective identity within the culture so too is the more serious form of play: the toxic sport of professional beer pong. The author conceptualises beer pong as a ‘toxic sport’, as it displays the contradictory play foundations of agon and corrupt ilinx: this is understood as a milestone step in the emergence of the postmodern sport era, in which spontaneity and the carnivalesque will dominate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid development of nanotechnology has led to a rise in the large-scale production and commercial use of engineered nano-ZnO. Engineered/manufactured nano-ZnO are applied in a broad range of products such as drugs, paints, cosmetics, abrasive agents and insulators. This can result in the unintended exposure of human beings to nano-ZnO and will inevitably result in the release of nano-ZnO in to the environment. Thus, it is necessary to assess the risk of nano-ZnO to the environment. In this thesis the toxicity of nano-ZnO was analysed using the aquatic, primary producer lesser duckweed (Lemna minor), and the mechanism of toxicity was analysed. Both short-term (one week) and long-term (six weeks) toxicity of nano-ZnO (uncoated) were determined. Results show that the toxicity of nano-ZnO added to the aquatic growth medium increases with increasing concentration and that toxicity accumulates with exposure time. A study of nano-ZnO dissolution reveals that the main reason for nano-ZnO toxicity on Lemna minor is the release of Zn ions. Nano-ZnO dissolution is pH dependent, and toxicity matches the release of Zn2+. Functional coating materials are commonly added to nano-ZnO particles to improve specific industrial applications. To test if coating materials contribute to nano-ZnO toxicity on lesser duckweed, the effect of silane coupling agent (KH550) coated nano-ZnO on Lemma minor was investigated. Results show that coating can decrease the release of Zn ions, which reduces toxicity to Lemna minor, in contrast to uncoated particles. Another commonly hypothesized reason for nano-ZnO toxicity is the formation of Reactive Oxygen Species (ROS) on the particles surface. As part of this thesis, the ROS formation induced by nano-ZnO was studied. Results show that nano-ZnO catalyse ROS formation and this can negatively affect duckweed growth. In conclusion, this work has detailed potentially toxic effects of nano-ZnO on Lemna minor. This study has also provides references for future research, and informs regulatory testing for nanoparticle toxicity. Specifically, the outcomes of this study emphasize the importance of exposure time, environmental parameters and coating material when analysing NPs toxicity. Firstly, impacts of longer exposure time should be studied. Secondly, environmental parameters such as pH and medium-composition need to be considered when investigating NPs toxicity. Lastly, coating of NPs should always be considered in the context of NPs toxicity, and similar NPs with different coatings require separate toxicity tests.