2 resultados para Time step
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Atomic layer deposition (ALD) of highly conformal, silicon-based dielectric thin films has become necessary because of the continuing decrease in feature size in microelectronic devices. The ALD of oxides and nitrides is usually thought to be mechanistically similar, but plasma-enhanced ALD of silicon nitride is found to be problematic, while that of silicon oxide is straightforward. To find why, the ALD of silicon nitride and silicon oxide dielectric films was studied by applying ab initio methods to theoretical models for proposed surface reaction mechanisms. The thermodynamic energies for the elimination of functional groups from different silicon precursors reacting with simple model molecules were calculated using density functional theory (DFT), explaining the lower reactivity of precursors toward the deposition of silicon nitride relative to silicon oxide seen in experiments, but not explaining the trends between precursors. Using more realistic cluster models of amine and hydroxyl covered surfaces, the structures and energies were calculated of reaction pathways for chemisorption of different silicon precursors via functional group elimination, with more success. DFT calculations identified the initial physisorption step as crucial toward deposition and this step was thus used to predict the ALD reactivity of a range of amino-silane precursors, yielding good agreement with experiment. The retention of hydrogen within silicon nitride films but not in silicon oxide observed in FTIR spectra was accounted for by the theoretical calculations and helped verify the application of the model.
Resumo:
Aquatic macrophytes can successfully colonise and re-colonise areas separated by space and time. The mechanisms underlying such “mobility” are not well understood, but it has often been hypothesised that epizoochory (external dispersal) plays an important role. Yet, there is only limited, and mostly anecdotal, evidence concerning successful epizoochorous dispersal of aquatic macrophytes, particularly in the case of short-distance dispersal. Here we examine in situ and ex situ dispersal of aquatic macrophytes, including three invasive alien species. A high frequency of Lemna minor Linnaeus dispersal was observed in situ, and this was linked to bird-mediated epizoochory. We concluded that wind had no effect on dispersal. Similarly, in an ex situ examination Lemna minuta Kunth and Azolla filiculoides Lamarck, were found to be dispersed with a high frequency by mallard ducks (Anas platyrhynchos). No dispersal was measured for Elodea nuttalli (Planchon) H. St. John. It is concluded that short-distance or “stepping-stone” dispersal via bird-mediated epizoochory can occur with high frequencies, and therefore can play an important role in facilitating colonisation, range expansion and biological invasion of macrophytes.