3 resultados para Time points
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Background: Reablement, also known as restorative care, is one possible approach to home-care services for older adults at risk of functional decline. Unlike traditional home-care services, reablement is frequently time-limited (usually six to 12 weeks) and aims to maximise independence by offering an intensive multidisciplinary, person-centred and goal-directed intervention. Objectives: To assess the effects of time-limited home-care reablement services (up to 12 weeks) for maintaining and improving the functional independence of older adults (aged 65 years or more) when compared to usual home-care or wait-list control group. Search methods: We searched the following databases with no language restrictions during April to June 2015: the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE (OvidSP); Embase (OvidSP); PsycINFO (OvidSP); ERIC; Sociological Abstracts; ProQuest Dissertations and Theses; CINAHL (EBSCOhost); SIGLE (OpenGrey); AgeLine and Social Care Online. We also searched the reference lists of relevant studies and reviews as well as contacting authors in the field. Selection criteria: We included randomised controlled trials (RCTs), cluster randomised or quasi-randomised trials of time-limited reablement services for older adults (aged 65 years or more) delivered in their home; and incorporated a usual home-care or wait-list control group. Data collection and analysis: Two authors independently assessed studies for inclusion, extracted data, assessed the risk of bias of individual studies and considered quality of the evidence using GRADE. We contacted study authors for additional information where needed. Main results: Two studies, comparing reablement with usual home-care services with 811 participants, met our eligibility criteria for inclusion; we also identified three potentially eligible studies, but findings were not yet available. One included study was conducted in Western Australia with 750 participants (mean age 82.29 years). The second study was conducted in Norway (61 participants; mean age 79 years). We are very uncertain as to the effects of reablement compared with usual care as the evidence was of very low quality for all of the outcomes reported. The main findings were as follows. Functional status: very low quality evidence suggested that reablement may be slightly more effective than usual care in improving function at nine to 12 months (lower scores reflect greater independence; standardised mean difference (SMD) -0.30; 95% confidence interval (CI) -0.53 to -0.06; 2 studies with 249 participants). Adverse events: reablement may make little or no difference to mortality at 12 months' follow-up (RR 0.97; 95% CI 0.74 to 1.29; 2 studies with 811 participants) or rates of unplanned hospital admission at 24 months (RR 0.94; 95% CI 0.85 to 1.03; 1 study with 750 participants). The very low quality evidence also means we are uncertain whether reablement may influence quality of life (SMD -0.23; 95% CI -0.48 to 0.02; 2 trials with 249 participants) or living arrangements (RR 0.92, 95% CI 0.62 to 1.34; 1 study with 750 participants) at time points up to 12 months. People receiving reablement may be slightly less likely to have been approved for a higher level of personal care than people receiving usual care over the 24 months' follow-up (RR 0.87; 95% CI 0.77 to 0.98; 1 trial, 750 participants). Similarly, although there may be a small reduction in total aggregated home and healthcare costs over the 24-month follow-up (reablement: AUD 19,888; usual care: AUD 22,757; 1 trial with 750 participants), we are uncertain about the size and importance of these effects as the results were based on very low quality evidence. Neither study reported user satisfaction with the service. Authors' conclusions: There is considerable uncertainty regarding the effects of reablement as the evidence was of very low quality according to our GRADE ratings. Therefore, the effectiveness of reablement services cannot be supported or refuted until more robust evidence becomes available. There is an urgent need for high quality trials across different health and social care systems due to the increasingly high profile of reablement services in policy and practice in several countries.
Resumo:
Maternal infection during pregnancy increases the risk of several neuropsychiatric disorders later in life, many of which have a component of dopaminergic (DA) dysfunction, including schizophrenia, autism spectrum disorders (ASD), and attention deficit hyperactivity disorder (ADHD). The majority of DA neurons are found in the adult midbrain; as such the midbrain is a key region of interest regarding these disorders. The literature is conflicting regarding the behavioral alterations following maternal immune activation (MIA) exposure, and the cellular and molecular consequences of MIA on the developing midbrain remain to be fully elucidated. Thus, this thesis aimed to establish the consequences of acute and mild MIA on offspring dopamine-related behaviors, as well as the associated cellular and molecular disturbances of MIA on offspring midbrains. We utilized a rat model of MIA using low dose (50μg/kg, I.P.) of LPS administered at different gestational ages. Our first study indicated that MIA at later gestational ages significantly increased pro-inflammatory IL-1β expression, and reduced HSD11B2 expression in the placenta, which is an important regulator of fetal development. In utero LPS exposure at later gestational ages also impaired the growth of neurons from affected offspring. This study identified key gestational stages during which MIA resulted in differential effects. We utilized these time points in subsequent studies, the next of which investigated neurobehavioral outcomes following MIA. Our results from that study showed that motor differences occurred in juvenile offspring following MIA at E16 only, and these differences were compensated for in adolescence. Then, there was a decline in motor behavior capabilities in adulthood, again only for animals exposed to MIA on E16 (and not E12). Furthermore, our results also demonstrated adolescent and adult offspring that were exposed to MIA at E12 had diminished responses to amphetamine in reward seeking behaviors. In our final study, we aimed to investigate the molecular and cellular changes following MIA which might explain these behavioral alterations. This final study showed a differential inflammatory response in fetal midbrains depending on gestational age of exposure as well as differential developmental alterations. For example, LPS exposure at E16 resulted in decreased VM neurosphere size after 7DIV and this was associated with an increased susceptibility to neurotoxic effects of pro-inflammatory cytokines for VM neurospheres and VM DA neurons treated in culture. In utero LPS exposure at E16 also reduced DA neuron count of fetal VM, measured by TH staining. However, there were no differences in DA neuron number in juvenile, adolescent, or adult offspring. Similarly, LPS exposure did not alter cell number or morphology of glial cells in the midbrains of affected offspring. In conclusion, this thesis indicated later rat pregnancy (E16) as vulnerable time for MIA to affect the development of the nigrostriatal pathway and subsequent behavioral outcomes, possibly implicating a role for MIA in increased risk for disorders associated with motor behavior, like PD. These effects may be mediated through alterations in the placenta and altered inflammatory mediators in the offspring brain. This thesis has also shown that MIA in earlier rat pregnancy (E12) results in altered mesocorticolimbic function, and in particular MIA on E12 resulted in a differential response to amphetamine in affected offspring, which may implicate a role for MIA in increasing the risk for disorders associated with this pathway, including drug tolerance and addiction.
Resumo:
In the present study, we aimed to examine the impact of cardiopulmonary bypass (CPB) on expression and function of NOD1 and NOD2 in children with congenital heart disease (CHD), in an attempt to clarify whether NOD1 and NOD2 signaling is involved in the modulation of host innate immunity against postoperative infection in pediatric CHD patients. Peripheral blood samples were collected from pediatric CHD patients at five different time points: before CPB, immediately after CPB, and 1, 3, and 7 days after CPB. Real-time PCR, Western blot, and ELISA were performed to measure the expression of NOD1 and NOD2, their downstream signaling pathways, and inflammatory cytokines at various time points. Proinflammatorycytokine IL-6 and TNF-α levels in response to stimulation with either the NOD1 agonist Tri-DAP or the NOD2 agonist MDP were significantly reduced after CPB compared with those before CPB, which is consistent with a suppressed inflammatory response postoperatively. The expression of phosphorylated RIP2 and activation of the downstream signaling pathways NF-κB p65 and MAPK p38 upon Tri-DAP or MDP stimulation in PBMCs were substantially inhibited after CPB. The mRNA level of NOD1 and protein levels of NOD1 and NOD2 were also markedly decreased after CPB. Our results demonstrated that NOD-mediated signaling pathways were substantially inhibited after CPB, which correlates with the suppressed inflammatory response and may account, at least in part, for the increased risk of postoperative infection in pediatric CHD patients.