2 resultados para Third order nonlinear ordinary differential equation

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes extended nonlinear analytical models, third-order models, of compliant parallelogram mechanisms. These models are capable of capturing the accurate effects from the very large axial force within the transverse motion range of 10% of the beam length through incorporating the terms associated with the high-order (up to third-order) axial force. Firstly, the free-body diagram method is employed to derive the nonlinear analytical model for a basic compliant parallelogram mechanism based on load-displacement relations of a single beam, geometry compatibility conditions, and load-equilibrium conditions. The procedures for the forward solutions and inverse solutions are described. Nonlinear analytical models for guided compliant multi-beam parallelogram mechanisms are then obtained. A case study of the compound compliant parallelogram mechanism, composed of two basic compliant parallelogram mechanisms in symmetry, is further implemented. This work intends to estimate the internal axial force change, the transverse force change, and the transverse stiffness change with the transverse motion using the proposed third-order model in comparison with the first-order model proposed in the prior art. In addition, FEA (finite element analysis) results validate the accuracy of the third-order model for a typical example. It is shown that in the case study the slenderness ratio affects the result discrepancy between the third-order model and the first-order model significantly, and the third-order model can illustrate a non-monotonic transverse stiffness curve if the beam is thin enough.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents an investigation to the thermodynamics of the air flow in the air chamber for the oscillating water column wave energy converters, in which the oscillating water surface in the water column pressurizes or de-pressurises the air in the chamber. To study the thermodynamics and the compressibility of the air in the chamber, a method is developed in this research: the power take-off is replaced with an accepted semi-empirical relationship between the air flow rate and the oscillating water column chamber pressure, and the thermodynamic process is simplified as an isentropic process. This facilitates the use of a direct expression for the work done on the power take-off by the flowing air and the generation of a single differential equation that defines the thermodynamic process occurring inside the air chamber. Solving the differential equation, the chamber pressure can be obtained if the interior water surface motion is known or the chamber volume (thus the interior water surface motion) if the chamber pressure is known. As a result, the effects of the air compressibility can be studied. Examples given in the paper have shown the compressibility, and its effects on the power losses for large oscillating water column devices.