8 resultados para The Strain

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A bacteriocin-producing strain of Lactobacillus paracasei DPC 4715 was used as an adjunct culture in Cheddar cheese in order to control the growth of “wild” nonstarter lactic acid bacteria. No suppression of growth of the indicator strain was observed in the experimental cheese. The bacteriocin produced by Lactobacillus paracasei DPC 4715 was sensitive to chymosin and cathepsin D and it may have been cleaved by the rennet used for the cheese manufactured or by indigenous milk proteases. A series of studies were performed using various microbial adjuncts to influence cheese ripening. Microbacterium casei DPC 5281, Corynebacterium casei DPC 5293 and Corynebacterium variabile DPC 5305 were added to the cheesemilk at level of 109 cfu/ml resulting in a final concentration of 108 cfu/g in Cheddar cheese. The strains significantly increased the level of pH 4.6-soluble nitrogen, total free amino acids after 60 and 180 d of ripening and some individual free amino acids after 180 d. Yarrowia lipolytica DPC 6266, Yarrowia lipolytica DPC 6268 and Candida intermedia DPC 6271 were used to accelerate the ripening of Cheddar cheese. Strains were grown in YG broth to a final concentration of 107 cfu/ml, microfluidized, freeze-dried and added to the curd during salting at level of 2% w/w. The yeasts positively affected the primary, secondary proteolysis and lipolysis of cheeses and had aminopeptidase, dipeptidase, esterase and 5’ phosphodiestere activities that contributed to accelerate the ripening and improve the flavor of cheese. Hafia alvei was added to Cheddar cheesemilk at levels of 107 cfu/ml and 108 cfu/ml and its contribution during ripening was evaluated. The strain significantly increased the level of pH 4.6-soluble nitrogen, total free amino-acids, and some individual free amino-acids of Cheddar cheese, whereas no differences in the urea-polyacrylamide gel electrophoresis (urea-PAGE) electrophoretograms of the cheeses were detected. Hafia alvei also significantly increased the level of some biogenic amines. A low-fat Cheddar cheese was made with Bifidobacterium animalis subsp. lactis, strain BB-12® at level of 108 cfu/ml, as a probiotic adjunct culture and Hi-Maize® 260 (resistant high amylose maize starch) at level of 2% and 4% w/v, as a prebiotic fiber which also played the role of fat replacer. Bifidobacterium BB-12 decreased by 1 log cycle after 60 d of ripening and remained steady at level of ~107 cfu/g during ripening. The Young’s modulus also increased proportionally with increasing levels of Hi-maize. Hencky strain at fracture decreased over ripening and increased with increasing in fat replacer. A cheese based medium (CBM) was developed with the purpose of mimicking the cheese environment at an early ripening stage. The strains grown in CBM showed aminopeptidase activity against Gly-, Arg-, Pro- and Phe-p-nitroanalide, whereas, when grown in MRS they were active against all the substrates tested. Both Lb. danicus strains grown in MRS and in CBM had aminotransferase activity towards aromatic amino acids (Phe and Trp) and also branched-chain amino acids (Leu and Val). Esterase activity was expressed against p-nitrophenyl-acetate (C2), pnitrophenyl- butyrate (C4) and p-nitrophenyl-palmitate (C16) and was significantly higher in CBM than in MRS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fungal spoilage is the most common type of microbial spoilage in food leading to significant economical and health problems throughout the world. Fermentation by lactic acid bacteria (LAB) is one of the oldest and most economical methods of producing and preserving food. Thus, LAB can be seen as an interesting tool in the development of novel bio-preservatives for food industry. The overall objective of this study was to demonstrate, that LAB can be used as a natural way to improve the shelf-life and safety of a wide range of food products. In the first part of the thesis, 116 LAB isolates were screened for their antifungal activity against four Aspergillus and Penicillium spp. commonly found in food. Approximately 83% of them showed antifungal activity, but only 1% showed a broad range antifungal activity against all tested fungi. The second approach was to apply LAB antifungal strains in production of food products with extended shelf-life. L. reuteri R29 strain was identified as having strong antifungal activity in vitro, as well as in sourdough bread against Aspergillus niger, Fusarium culmorum and Penicillium expansum. The ability of the strain to produce bread of good quality was also determined using standard baking tests. Another strain, L. amylovorus DSM19280, was also identified as having strong antifungal activity in vitro and in vivo. The strain was used as an adjunct culture in a Cheddar cheese model system and demonstrated the inhibition of P. expansum. Significantly, its presence had no detectable negative impact on cheese quality as determined by analysis of moisture, salt, pH, and primary and secondary proteolysis. L. brevis PS1 a further strain identified during the screening as very antifungal, showed activity in vitro against common Fusarium spp. and was used in the production of a novel functional wortbased alcohol-free beverage. Challenge tests performed with F. culmorum confirmed the effectiveness of the antifungal strain in vivo. The shelf-life of the beverage was extended significantly when compared to not inoculated wort sample. A range of antifungal compounds were identified for the 4 LAB strains, namely L. reuteri ee1p, L. reuteri R29, L. brevis PS1 and L. amylovorous DSM20531. The identification of the compounds was based on liquid chromatography interfaced to the mass spectrometer and PDA detector

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quantitative analysis of penetrative deformation in sedimentary rocks of fold and thrust belts has largely been carried out using clast based strain analysis techniques. These methods analyse the geometric deviations from an original state that populations of clasts, or strain markers, have undergone. The characterisation of these geometric changes, or strain, in the early stages of rock deformation is not entirely straight forward. This is in part due to the paucity of information on the original state of the strain markers, but also the uncertainty of the relative rheological properties of the strain markers and their matrix during deformation, as well as the interaction of two competing fabrics, such as bedding and cleavage. Furthermore one of the single largest setbacks for accurate strain analysis has been associated with the methods themselves, they are traditionally time consuming, labour intensive and results can vary between users. A suite of semi-automated techniques have been tested and found to work very well, but in low strain environments the problems discussed above persist. Additionally these techniques have been compared to Anisotropy of Magnetic Susceptibility (AMS) analyses, which is a particularly sensitive tool for the characterisation of low strain in sedimentary lithologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Bifibobacterium longum subsp. longum 35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum 35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antibiotic resistance is an increasing threat to our ability to treat infectious diseases. Thus, understanding the effects of antibiotics on the gut microbiota, as well as the potential for such populations to act as a reservoir for resistance genes, is imperative. This thesis set out to investigate the gut microbiota of antibiotic treated infants compared to untreated controls using high-throughput DNA sequencing. The results demonstrated the significant effects of antibiotic treatment, resulting in increased proportions of Proteobacteria and decreased proportions of Bifidobacterium. The species diversity of bifidobacteria was also reduced. This thesis also highlights the ability of the human gut microbiota to act as an antibiotic resistance reservoir. Using metagenomic DNA extracted from faecal samples from adult males, PCR was employed to demonstrate the prevalence and diversity of aminoglycoside and β-lactam resistance genes in the adult gut microbiota and highlighted the merits of the approach adopted. Using infant faecal samples, we constructed and screened a second fosmid metagenomic bank for the same families of resistance genes and demonstrated that the infant gut microbiota is also a reservoir for resistance genes. Using in silico analysis we highlighted the existence of putative aminoglycoside and β-lactam resistance determinants within the genomes of Bifidobacterium species. In the case of the β- lactamases, these appear to be mis-annotated. However, through homologous recombination-mediated insertional inactivation, we have demonstrated that the putative aminoglycoside resistance proteins do contribute to resistance. In additional studies, we investigated the effects of short bowel syndrome on infant gut microbiota, the immune system and bile acid metabolism. We also sequenced the microbiota of the human vermiform appendix, highlighting its complexity. Finally, this thesis demonstrated the strain specific nature of 2 different probiotic CLA-producing Bifidobacterium breve on the murine gut microbiota.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814(T), showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B-12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain's ability to populate different niches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infant formula is often produced as an agglomerated powder using a spray drying process. Pneumatic conveying is commonly used for transporting this product within a manufacturing plant. The transient mechanical loads imposed by this process cause some of the agglomerates to disintegrate, which has implications for key quality characteristics of the formula including bulk density and wettability. This thesis used both experimental and modelling approaches to investigate this breakage during conveying. One set of conveying trials had the objective of establishing relationships between the geometry and operating conditions of the conveying system and the resulting changes in bulk properties of the infant formula upon conveying. A modular stainless steel pneumatic conveying rig was constructed for these trials. The mode of conveying and air velocity had a statistically-significant effect on bulk density at a 95% level, while mode of conveying was the only factor which significantly influenced D[4,3] or wettability. A separate set of conveying experiments investigated the effect of infant formula composition, rather than the pneumatic conveying parameters, and also assessed the relationships between the mechanical responses of individual agglomerates of four infant formulae and their compositions. The bulk densities before conveying, and the forces and strains at failure of individual agglomerates, were related to the protein content. The force at failure and stiffness of individual agglomerates were strongly correlated, and generally increased with increasing protein to fat ratio while the strain at failure decreased. Two models of breakage were developed at different scales; the first was a detailed discrete element model of a single agglomerate. This was calibrated using a novel approach based on Taguchi methods which was shown to have considerable advantages over basic parameter studies which are widely used. The data obtained using this model compared well to experimental results for quasi-static uniaxial compression of individual agglomerates. The model also gave adequate results for dynamic loading simulations. A probabilistic model of pneumatic conveying was also developed; this was suitable for predicting breakage in large populations of agglomerates and was highly versatile: parts of the model could easily be substituted by the researcher according to their specific requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine sponges have been an abundant source of new metabolites in recent years. The symbiotic association between the bacteria and the sponge has enabled scientists to access the bacterial diversity present within the bacterial/sponge ecosystem. This study has focussed on accessing the bacterial diversity in two Irish coastal marine sponges, namely Amphilectus fucorum and Eurypon major. A novel species from the genus Aquimarina has been isolated from the sponge Amphilectus fucorum. The study has also resulted in the identification of an α–Proteobacteria, Pseudovibrio sp. as a potential producer of antibiotics. Thus a targeted based approach to specifically cultivate Pseudovibrio sp. may prove useful for the development of new metabolites from this particular genus. Bacterial isolates from the marine sponge Haliclona simulans were screened for anti–fungal activity and one isolate namely Streptomyces sp. SM8 displayed activity against all five fungal strains tested. The strain was also tested for anti–bacterial activity and it showed activity against both against B. subtilis and P. aeruginosa. Hence a combinatorial approach involving both biochemical and genomic approaches were employed in an attempt to identify the bioactive compounds with these activities which were being produced by this strain. Culture broths from Streptomyces sp. SM8 were extracted and purified by various techniques such as reverse–phase HPLC, MPLC and ash chromatography. Anti–bacterial activity was observed in a fraction which contained a hydroxylated saturated fatty acid and also another compound with a m/z 227 but further structural elucidation of these compounds proved unsuccessful. The anti–fungal fractions from SM8 were shown to contain antimycin–like compounds, with some of these compounds having different retention times from that of an antimycin standard. A high–throughput assay was developed to screen for novel calcineurin inhibitors using yeast as a model system and three putative bacterial extracts were found to be positive using this screen. One of these extracts from SM8 was subsequently analysed using NMR and the calcineurin inhibition activity was con rmed to belong to a butenolide type compound. A H. simulans metagenomic library was also screened using the novel calcineurin inhibitor high–throughput assay system and eight clones displaying putative calcineurin inhibitory activity were detected. The clone which displayed the best inhibitory activity was subsequently sequenced and following the use of other genetic based approaches it became clear that the inhibition was being caused by a hypothetical protein with similarity to a hypothetical Na+/Ca2+ exchanger protein. The Streptomyces sp. SM8 genome was sequenced from a fragment library using Roche 454 pyrosequencing technology to identify potential secondary metabolism clusters. The draft genome was annotated by IMG/ER using the Prodigal pipeline. The Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMPN00000000. The genome contains genes which appear to encode for several polyketide synthases (PKS), non–ribosomal peptide synthetases (NRPS), terpene and siderophore biosynthesis and ribosomal peptides. Transcriptional analyses led to the identification of three hybrid clusters of which one is predicted to be involved in the synthesis of antimycin, while the functions of the others are as yet unknown. Two NRPS clusters were also identified, of which one may be involved in gramicidin biosynthesis and the function of the other is unknown. A Streptomyces sp. SM8 NRPS antC gene knockout was constructed and extracts from the strain were shown to possess a mild anti–fungal activity when compared to the SM8 wild–type. Subsequent LCMS analysis of antC mutant extracts confirmed the absence of the antimycin in the extract proving that the observed anti–fungal activity may involve metabolite(s) other than antimycin. Anti–bacterial activity in the antC gene knockout strain against P. aeruginosa was reduced when compared to the SM8 wild–type indicating that antimycin may be contributing to the observed anti–bacterial activity in addition to the metabolite(s) already identified during the chemical analyses. This is the first report of antimycins exhibiting anti–bacterial activity against P. aeruginosa. One of the hybrid clusters potentially involved in secondary metabolism in SM8 that displayed high and consistent levels of gene–expression in RNA studies was analysed in an attempt to identify the metabolite being produced by the pathway. A number of unusual features were observed following bioinformatics analysis of the gene sequence of the cluster, including a formylation domain within the NRPS cluster which may add a formyl group to the growing chain. Another unusual feature is the lack of AT domains on two of the PKS modules. Other unusual features observed in this cluster is the lack of a KR domain in module 3 of the cluster and an aminotransferase domain in module 4 for which no clear role has been hypothesised.