5 resultados para Texture profile analysis
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Background and Study Rationale Being physically active is a major contributor to both physical and mental health. More specifically, being physically active lowers risk of coronary heart disease, high blood pressure, stroke, metabolic syndrome (MetS), diabetes, certain cancers and depression, and increases cognitive function and wellbeing. The physiological mechanisms that occur in response to physical activity and the impact of total physical activity and sedentary behaviour on cardiometabolic health have been extensively studied. In contrast, limited data evaluating the specific effects of daily and weekly patterns of physical behaviour on cardiometabolic health exist. Additionally, no other study has examined interrelated patterns and minute-by-minute accumulation of physical behaviour throughout the day across week days in middle-aged adults. Study Aims The overarching aims of this thesis are firstly to describe patterns of behaviour throughout the day and week, and secondly to explore associations between these patterns and cardiometabolic health in a middle-aged population. The specific objectives are to: 1 Compare agreement between the International Physical Activity Questionnaire-Short Form (IPAQ-SF) and GENEActiv accelerometer-derived moderate-to-vigorous (MVPA) activity and secondly to compare their associations with a range of cardiometabolic and inflammatory markers in middle-aged adults. 2 Determine a suitable monitoring frame needed to reliably capture weekly, accelerometer-measured, activity in our population. 3 Identify groups of participants who have similar weekly patterns of physical behaviour, and determine if underlying patterns of cardiometabolic profiles exist among these groups. 4 Explore the variation of physical behaviour throughout the day to identify whether daily patterns of physical behaviour vary by cardiometabolic health. Methods All results in this thesis are based on data from a subsample of the Mitchelstown Cohort; 475 (46.1% males; mean aged 59.7±5.5 years) middle-aged Irish adults. Subjective physical activity levels were assessed using the IPAQ-SF. Participants wore the wrist GENEActiv accelerometer for 7 consecutive days. Data was collected at 100Hz and summarised into a signal magnitude vector using 60s epochs. Each time interval was categorised based on validated cut-offs. Data on cardiometabolic and inflammatory markers was collected according to standard protocol. Cardiometabolic outcomes (obesity, diabetes, hypertension and MetS) were defined according to internationally recognised definitions by World Health Organisation (WHO) and Irish Diabetes Federation (IDF). Results The results of the first chapter suggest that the IPAQ-SF lacks the sensitivity to assess patterning of activity and guideline adherence and assessing the relationship with cardiometabolic and inflammatory markers. Furthermore, GENEActiv accelerometer-derived MVPA appears to be better at detecting relationships with cardiometabolic and inflammatory markers. The second chapter examined variations in day-to-day physical behaviour levels between- and within-subjects. The main findings were that Sunday differed from all other days in the week for sedentary behaviour and light activity and that a large within-subject variation across days of the week for vigorous activity exists. Our data indicate that six days of monitoring, four weekdays plus Saturday and Sunday, are required to reliably estimate weekly habitual activity in all activity intensities. In the next chapter, latent profile analysis of weekly, interrelated patterns of physical behaviour identified four distinct physical behaviour patterns; Sedentary Group (15.9%), Sedentary; Lower Activity Group (28%), Sedentary; Higher Activity Group (44.2%) and a Physically Active Group (11.9%). Overall the Sedentary Group had poorer outcomes, characterised by unfavourable cardiometabolic and inflammatory profiles. The remaining classes were characterised by healthier cardiometabolic profiles with lower sedentary behaviour levels. The final chapter, which aimed to compare daily cumulative patterns of minute-by-minute physical behaviour intensities across those with and without MetS, revealed significant differences in weekday and weekend day MVPA. In particular, those with MetS start accumulating MVPA later in the day and for a shorted day period. Conclusion In conclusion, the results of this thesis add to the evidence base regards an optimal monitoring period for physical behaviour measurement to accurately capture weekly physical behaviour patterns. In addition, the results highlight whether weekly and daily distribution of activity is associated with cardiometabolic health and inflammatory profiles. The key findings of this thesis demonstrate the importance of daily and weekly physical behaviour patterning of activity intensity in the context of cardiometabolic health risk. In addition, these findings highlight the importance of using physical behaviour patterns of free-living adults observed in a population-based study to inform and aid health promotion activity programmes and primary care prevention and treatment strategies and development of future tailored physical activity based interventions.
Resumo:
The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohy drodynamic peeling-ballooning modes become unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement be- tween the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs sup- pressed by external magnetic perturbations, and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation on- sets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, providing a mechanism to suppress both the peeling and ballooning modes.
Resumo:
There has been an increased use of the Doubly-Fed Induction Machine (DFIM) in ac drive applications in recent times, particularly in the field of renewable energy systems and other high power variable-speed drives. The DFIM is widely regarded as the optimal generation system for both onshore and offshore wind turbines and has also been considered in wave power applications. Wind power generation is the most mature renewable technology. However, wave energy has attracted a large interest recently as the potential for power extraction is very significant. Various wave energy converter (WEC) technologies currently exist with the oscillating water column (OWC) type converter being one of the most advanced. There are fundemental differences in the power profile of the pneumatic power supplied by the OWC WEC and that of a wind turbine and this causes significant challenges in the selection and rating of electrical generators for the OWC devises. The thesis initially aims to provide an accurate per-phase equivalent circuit model of the DFIM by investigating various characterisation testing procedures. Novel testing methodologies based on the series-coupling tests is employed and is found to provide a more accurate representation of the DFIM than the standard IEEE testing methods because the series-coupling tests provide a direct method of determining the equivalent-circuit resistances and inductances of the machine. A second novel method known as the extended short-circuit test is also presented and investigated as an alternative characterisation method. Experimental results on a 1.1 kW DFIM and a 30 kW DFIM utilising the various characterisation procedures are presented in the thesis. The various test methods are analysed and validated through comparison of model predictions and torque-versus-speed curves for each induction machine. Sensitivity analysis is also used as a means of quantifying the effect of experimental error on the results taken from each of the testing procedures and is used to determine the suitability of the test procedures for characterising each of the devices. The series-coupling differential test is demonstrated to be the optimum test. The research then focuses on the OWC WEC and the modelling of this device. A software model is implemented based on data obtained from a scaled prototype device situated at the Irish test site. Test data from the electrical system of the device is analysed and this data is used to develop a performance curve for the air turbine utilised in the WEC. This performance curve was applied in a software model to represent the turbine in the electro-mechanical system and the software results are validated by the measured electrical output data from the prototype test device. Finally, once both the DFIM and OWC WEC power take-off system have been modeled succesfully, an investigation of the application of the DFIM to the OWC WEC model is carried out to determine the electrical machine rating required for the pulsating power derived from OWC WEC device. Thermal analysis of a 30 kW induction machine is carried out using a first-order thermal model. The simulations quantify the limits of operation of the machine and enable thedevelopment of rating requirements for the electrical generation system of the OWC WEC. The thesis can be considered to have three sections. The first section of the thesis contains Chapters 2 and 3 and focuses on the accurate characterisation of the doubly-fed induction machine using various testing procedures. The second section, containing Chapter 4, concentrates on the modelling of the OWC WEC power-takeoff with particular focus on the Wells turbine. Validation of this model is carried out through comparision of simulations and experimental measurements. The third section of the thesis utilises the OWC WEC model from Chapter 4 with a 30 kW induction machine model to determine the optimum device rating for the specified machine. Simulations are carried out to perform thermal analysis of the machine to give a general insight into electrical machine rating for an OWC WEC device.
Resumo:
Flavour release from food is determined by the binding of flavours to other food ingredients and the partition of flavour molecules among different phases. Food emulsions are used as delivery systems for food flavours, and tailored structuring in emulsions provides novel means to better control flavour release. The current study investigated four structured oil-in-water emulsions with structuring in the oil phase, oil-water interface, and water phase. Oil phase structuring was achieved by the formation of monoglyceride (MG) liquid crystals in the oil droplets (MG structured emulsions). Structured interface was created by the adsorption of a whey protein isolate (WPI)-pectin double layer at the interface (multilayer emulsion). Water phase structured emulsions referred to emulsion filled protein gels (EFP gels), where emulsion droplets were embedded in WPI gel network, and emulsions with maltodextrins (MDs) of different dextrose-equivalent (DE) values. Flavour compounds with different physicochemical properties were added into the emulsions, and flavour release (release rate, headspace concentration and air-emulsion partition coefficient) was described by GC headspace analysis. Emulsion structures, including crystalline structure, particle size, emulsion stability, rheology, texture, and microstructures, were characterized using differential scanning calorimetry and X-ray diffraction, light scattering, multisample analytical centrifuge, rheometry, texture analysis, and confocal laser scanning microscopy, respectively. In MG structured emulsions, MG self-assembled into liquid crystalline structures and stable β-form crystals were formed after 3 days of storage at 25 °C. The inclusion of MG crystals allowed tween 20 stabilized emulsions to present viscoelastic properties, and it made WPI stabilized emulsions more sensitive to the change of pH and NaCl concentrations. Flavour compounds in MG structured emulsions had lower initial headspace concentration and air-emulsion partition coefficients than those in unstructured emulsions. Flavour release can be modulated by changing MG content, oil content and oil type. WPI-pectin multilayer emulsions were stable at pH 5.0, 4.0, and 3.0, but they presented extensive creaming when subjected to salt solutions with NaCl ≥ 150 mM and mixed with artificial salivas. Increase of pH from 5.0 to 7.0 resulted in higher headspace concentration but unchanged release rate, and increase of NaCl concentration led to increased headspace concentration and release rate. The study also showed that salivas could trigger higher release of hydrophobic flavours and lower release of hydrophilic flavours. In EFP gels, increases in protein content and oil content contributed to gels with higher storage modulus and force at breaking. Flavour compounds had significantly reduced release rates and air-emulsion partition coefficients in the gels than the corresponding ungelled emulsions, and the reduction was in line with the increase of protein content. Gels with stronger gel network but lower oil content were prepared, and lower or unaffected release rates of the flavours were observed. In emulsions containing maltodextrins, water was frozen at a much lower temperature, and emulsion stability was greatly improved when subjected to freeze-thawing. Among different MDs, MD DE 6 offered the emulsion the highest stability. Flavours had lower air-emulsion partition coefficients in the emulsions with MDs than those in the emulsion without MD. Moreover, the involvement of MDs in the emulsions allowed most flavours had similar release profiles before and after freeze-thaw treatment. The present study provided information about different structured emulsions as delivery systems for flavour compounds, and on how food structure can be designed to modulate flavour release, which could be helpful in the development of functional foods with improved flavour profile.
Resumo:
The Leaving Certificate (LC) is the national, standardised state examination in Ireland necessary for entry to third level education – this presents a massive, raw corpus of data with the potential to yield invaluable insight into the phenomena of learner interlanguage. With samples of official LC Spanish examination data, this project has compiled a digitised corpus of learner Spanish comprised of the written and oral production of 100 candidates. This corpus was then analysed using a specific investigative corpus technique, Computer-aided Error Analysis (CEA, Dagneaux et al, 1998). CEA is a powerful apparatus in that it greatly facilitates the quantification and analysis of a large learner corpus in digital format. The corpus was both compiled and analysed with the use of UAM Corpus Tool (O’Donnell 2013). This Tool allows for the recording of candidate-specific variables such as grade, examination level, task type and gender, therefore allowing for critical analysis of the corpus as one unit, as separate written and oral sub corpora and also of performance per task, level and gender. This is an interdisciplinary work combining aspects of Applied Linguistics, Learner Corpus Research and Foreign Language (FL) Learning. Beginning with a review of the context of FL learning in Ireland and Europe, I go on to discuss the disciplinary context and theoretical framework for this work and outline the methodology applied. I then perform detailed quantitative and qualitative analyses before going on to combine all research findings outlining principal conclusions. This investigation does not make a priori assumptions about the data set, the LC Spanish examination, the context of FLs or of any aspect of learner competence. It undertakes to provide the linguistic research community and the domain of Spanish language learning and pedagogy in Ireland with an empirical, descriptive profile of real learner performance, characterising learner difficulty.