9 resultados para Techniques and Skills

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative analysis of penetrative deformation in sedimentary rocks of fold and thrust belts has largely been carried out using clast based strain analysis techniques. These methods analyse the geometric deviations from an original state that populations of clasts, or strain markers, have undergone. The characterisation of these geometric changes, or strain, in the early stages of rock deformation is not entirely straight forward. This is in part due to the paucity of information on the original state of the strain markers, but also the uncertainty of the relative rheological properties of the strain markers and their matrix during deformation, as well as the interaction of two competing fabrics, such as bedding and cleavage. Furthermore one of the single largest setbacks for accurate strain analysis has been associated with the methods themselves, they are traditionally time consuming, labour intensive and results can vary between users. A suite of semi-automated techniques have been tested and found to work very well, but in low strain environments the problems discussed above persist. Additionally these techniques have been compared to Anisotropy of Magnetic Susceptibility (AMS) analyses, which is a particularly sensitive tool for the characterisation of low strain in sedimentary lithologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis is the exploration and characterization of novel Au nanorod-semiconductor nanowire hybrid nanostructures. I provide a comprehensive bottom-up approach in which, starting from the synthesis and theoretical investigation of the optical properties of Au nanorods, I design, nanofabricate and characterize Au nanorods-semiconductor nanowire hybrid nanodevices with novel optoelectronic capabilities compared to the non-hybrid counterpart. In this regards, I first discuss the seed-mediated protocols to synthesize Au nanorods with different sizes and the influence of nanorod geometries and non-homogeneous surrounding medium on the optical properties investigated by theoretical simulation. Novel methodologies for assembling Au nanorods on (i) a Si/SiO2 substrate with highly-ordered architecture and (ii) on semiconductor nanowires with spatial precision are developed and optimized. By exploiting these approaches, I demonstrate that Raman active modes of an individual ZnO nanowire can be detected in non-resonant conditions by exploring the longitudinal plasmonic resonance mediation of chemical-synthesized Au nanorods deposited on the nanowire surface otherwise not observable on bare ZnO nanowire. Finally, nanofabrication and detailed electrical characterization of ZnO nanowire field-effect transistor (FET) and optoelectronic properties of Au nanorods - ZnO nanowire FET tunable near-infrared photodetector are investigated. In particular we demonstrated orders of magnitude enhancement in the photocurrent intensity in the explored range of wavelengths and 40 times faster time response compared to the bare ZnO FET detector. The improved performance, attributed to the plasmonicmediated hot-electron generation and injection mechanism underlying the photoresponse is investigated both experimentally and theoretically. The miniaturized, tunable and integrated capabilities offered by metal nanorodssemicondictor nanowire device architectures presented in this thesis work could have an important impact in many application fields such as opto-electronic sensors, photodetectors and photovoltaic devices and open new avenues for designing of novel nanoscale optoelectronic devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For pt. I see ibid., vol. 44, p. 927-36 (1997). In a digital communications system, data are transmitted from one location to another by mapping bit sequences to symbols, and symbols to sample functions of analog waveforms. The analog waveform passes through a bandlimited (possibly time-varying) analog channel, where the signal is distorted and noise is added. In a conventional system the analog sample functions sent through the channel are weighted sums of one or more sinusoids; in a chaotic communications system the sample functions are segments of chaotic waveforms. At the receiver, the symbol may be recovered by means of coherent detection, where all possible sample functions are known, or by noncoherent detection, where one or more characteristics of the sample functions are estimated. In a coherent receiver, synchronization is the most commonly used technique for recovering the sample functions from the received waveform. These sample functions are then used as reference signals for a correlator. Synchronization-based coherent receivers have advantages over noncoherent receivers in terms of noise performance, bandwidth efficiency (in narrow-band systems) and/or data rate (in chaotic systems). These advantages are lost if synchronization cannot be maintained, for example, under poor propagation conditions. In these circumstances, communication without synchronization may be preferable. The theory of conventional telecommunications is extended to chaotic communications, chaotic modulation techniques and receiver configurations are surveyed, and chaotic synchronization schemes are described

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is concerned with several aspects of the chemistry of iron compounds. The preparation (with particular emphasis on coprecipitation and sol-gel techniques) and processing of ferrites are discussed. Chapter 2 describes the synthesis of Ni-Zn ferrites with various compositions by three methods. These methods include coprecipitation and sol-gel techniques. The Ni-Zn ferrites were characterised by powder X-ray diffactometry (PXRD), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), Mössbauer spectroscopy and resistivity measurements. The results for the corresponding ferrites prepared by each method are compared. Chapter 3 reports the sol-gel preparation of a lead borosilicate glass and its addition to Ni-Zn ferrites prepared by the sol-gel method in Chapter 2. The glass-ferrites formed were analysed by the same techniques employed in Chapter 2. Alterations in the microstructure, magnetic and electronic properties of the ferrites due to glass addition are described. Chapter 4 introduces compounds containing Fe-O-B, Fe-O-Si or B-O-Si linkages. The synthesis and characterisation of compounds containing Fe-O-B units are described. The structure of [Fe(SALEN)]2O.CH2Cl2 (17), used in attempts to prepare compounds with Fe-O-Si bonds, was determined by X-ray crystallography. Chapter 4 also details the synthesis of three new borosilicate compounds containing ferrocenyl groups, i.e. [FcBO)2(OSiBut2)2] (19), [(FcBO)2(OSiPh2)2] (20) and [FcBOSiPh3] (21). The structure of (19) was determined by X-ray Crystallographic analysis. Chapter 5 reviews the intercalation properties of the layered host compound iron oxychloride (FeOCI). Intercalation compounds prepared with the microwave dielectric heating technique are also discussed. The syntheses of intercalation compounds by the microwave method with FeOCI as host and ferrocene, ferrocenylboronic acid and 4-aminopyridine as guest species are described. Characterisation of these compounds by powder X-ray diffractometry (PXRD) and M{ssbauer spectroscopy is reported. The attempted synthesis of an intercalation compound with the borosilicate compound (19) as guest species is discussed. Appendices A-E describe the theory and instrumentation involved in powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM0, vibrating sample magnetometry (VSM), Mössbauer spectroscopy and electrical resistivity measurements, respectively. Appendix F details the attempted syntheses of compounds with Fe-O-B and Fe-O-Si linkages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An aim of proactive risk management strategies is the timely identification of safety related risks. One way to achieve this is by deploying early warning systems. Early warning systems aim to provide useful information on the presence of potential threats to the system, the level of vulnerability of a system, or both of these, in a timely manner. This information can then be used to take proactive safety measures. The United Nation’s has recommended that any early warning system need to have four essential elements, which are the risk knowledge element, a monitoring and warning service, dissemination and communication and a response capability. This research deals with the risk knowledge element of an early warning system. The risk knowledge element of an early warning system contains models of possible accident scenarios. These accident scenarios are created by using hazard analysis techniques, which are categorised as traditional and contemporary. The assumption in traditional hazard analysis techniques is that accidents are occurred due to a sequence of events, whereas, the assumption of contemporary hazard analysis techniques is that safety is an emergent property of complex systems. The problem is that there is no availability of a software editor which can be used by analysts to create models of accident scenarios based on contemporary hazard analysis techniques and generate computer code that represent the models at the same time. This research aims to enhance the process of generating computer code based on graphical models that associate early warning signs and causal factors to a hazard, based on contemporary hazard analyses techniques. For this purpose, the thesis investigates the use of Domain Specific Modeling (DSM) technologies. The contributions of this thesis is the design and development of a set of three graphical Domain Specific Modeling languages (DSML)s, that when combined together, provide all of the necessary constructs that will enable safety experts and practitioners to conduct hazard and early warning analysis based on a contemporary hazard analysis approach. The languages represent those elements and relations necessary to define accident scenarios and their associated early warning signs. The three DSMLs were incorporated in to a prototype software editor that enables safety scientists and practitioners to create and edit hazard and early warning analysis models in a usable manner and as a result to generate executable code automatically. This research proves that the DSM technologies can be used to develop a set of three DSMLs which can allow user to conduct hazard and early warning analysis in more usable manner. Furthermore, the three DSMLs and their dedicated editor, which are presented in this thesis, may provide a significant enhancement to the process of creating the risk knowledge element of computer based early warning systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cerium dioxide (ceria) nanoparticles have been the subject of intense academic and industrial interest. Ceria has a host of applications but academic interest largely stems from their use in the modern automotive catalyst but it is also of interest because of many other application areas notably as the abrasive in chemical-mechanical planarisation of silicon substrates. Recently, ceria has been the focus of research investigating health effects of nanoparticles. Importantly, the role of non-stoichiometry in ceria nanoparticles is implicated in their biochemistry. Ceria has well understood non-stoichiometry based around the ease of formation of anion vacancies and these can form ordered superstructures based around the fluorite lattice structure exhibited by ceria. The anion vacancies are associated with localised or small polaron states formed by the electrons that remain after oxygen desorption. In simple terms these electrons combine with Ce4+ states to form Ce3+ states whose larger ionic radii is associated with a lattice expansion compared to stoichiometric CeO2. This is a very simplistic explanation and greater defect chemistry complexity is suggested by more recent work. Various authors have shown that vacancies are mobile and may result in vacancy clustering. Ceria nanoparticles are of particular interest because of the high activity and surface area of small particulates. The sensitivity of the cerium electronic band structure to environment would suggest that changes in the properties of ceria particles at nanoscale dimensions might be expected. Notably many authors report a lattice expansion with reducing particle size (largely confined to sub-10 nm particles). Most authors assign increased lattice dimensions to the presence of a surface stable Ce2O3 type layer at low nanoparticle dimensions. However, our understanding of oxide nanoparticles is limited and their full and quantitative characterisation offers serious challenges. In a series of chemical preparations by ourselves we see little evidence of a consistent model emerging to explain lattice parameter changes with nanoparticle size. Based on these results and a review of the literature it is worthwhile asking if a model of surface enhanced defect concentration is consistent with known cerium/cerium oxide chemistries, whether this is applicable to a range of different synthesis methods and if a more consistent description is possible. In Chapter one the science of cerium oxide is outlined including the crystal structure, defect chemistry and different oxidation states available. The uses and applications of cerium oxide are also discussed as well as modelling of the lattice parameter and the doping of the ceria lattice. Chapter two describes both the synthesis techniques and the analytical methods employed to execute this research. Chapter three focuses on high surface area ceria nano-particles and how these have been prepared using a citrate sol-gel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures. X-ray diffraction methods were used to determine their lattice parameters. The particles sizes were also assessed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and BET, and, the lattice parameter was found to decrease with decreasing particle size. The results are discussed in light of the role played by surface tension effects. Chapter four describes the morphological and structural characterization of crystalline CeO2 nanoparticles prepared by forward and reverse precipitation techniques and compares these by powder x-ray diffraction (PXRD), nitrogen adsorption (BET) and high resolution transmission electron microscopy (HRTEM) analysis. The two routes give quite different materials although in both cases the products are essentially highly crystalline, dense particulates. It was found that the reverse precipitation technique gave the smallest crystallites with the narrowest size dispersion. This route also gave as-synthesised materials with higher surface areas. HRTEM confirmed the observations made from PXRD data and showed that the two methods resulted in quite different morphologies and surface chemistries. The forward route gives products with significantly greater densities of Ce3+ species compared to the reverse route. Data are explained using known precipitation chemistry and kinetic effects. Chapter five centres on the addition of terbia to ceria and has been investigated using XRD, XRF, XPS and TEM. Good solid solutions were formed across the entire composition range and there was no evidence for the formation of mixed phases or surface segregation over either the composition or temperature range investigated. Both Tb3+ and Tb4+ ions exist within the solution and the ratios of these cations are consistent with the addition of Tb8O15 to the fluorite ceria structure across a wide range of compositions. Local regions of anion vacancy ordering may be visible for small crystallites. There is no evidence of significant Ce3+ ion concentrations formed at the surface or in the bulk by the addition of terbia. The lattice parameter of these materials was seen to decrease with decreasing crystallite size. This is consistent with increased surface tension effects at small dimension. Chapter six reviews size related lattice parameter changes and surface defects in ceria nanocrystals. Ceria (CeO2) has many important applications, notably in catalysis. Many of its uses rely on generating nanodimensioned particles. Ceria has important redox chemistry where Ce4+ cations can be reversibly reduced to Ce3+ cations and associated anion vacancies. The significantly larger size of Ce3+ (compared with Ce4+) has been shown to result in lattice expansion. Many authors have observed lattice expansion in nanodimensioned crystals (nanocrystals), and these have been attributed to the presence of stabilized Ce3+ -anion vacancy combinations in these systems. Experimental results presented here show (i) that significant, but complex changes in the lattice parameter with size can occur in 2-500 nm crystallites, (ii) that there is a definitive relationship between defect chemistry and the lattice parameter in ceria nanocrystals, and (iii) that the stabilizing mechanism for the Ce3+ -anion vacancy defects at the surface of ceria nanocrystals is determined by the size, the surface status, and the analysis conditions. In this work, both lattice expansion and a more unusual lattice contraction in ultrafine nanocrystals are observed. The lattice deformations seen can be defined as a function of both the anion vacancy (hydroxyl) concentration in the nanocrystal and the intensity of the additional pressure imposed by the surface tension on the crystal. The expansion of lattice parameters in ceria nanocrystals is attributed to a number of factors, most notably, the presence of any hydroxyl moieties in the materials. Thus, a very careful understanding of the synthesis combined with characterization is required to understand the surface chemistry of ceria nanocrystals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis seeks to clarify the faceted organisation of psychopathy with a view to developing a comprehensive protocol for the assessment of core psychopathic personality traits. The framework developed will, as best as possible, be free of sample bias. The Self-and Informant-report Deviant Personality Screen (DPS) is introduced and a series of empirical studies are conducted to examine the psychometric properties and construct validity of these measures in general and offender populations. Findings from these studies provide strong support for the utility of the DPS scales for the appraisal of psychopathy across diverse population samples. In addition to this, the utility of cognitive based performance measures for the assessment of emotional deficits in psychopathy is evaluated. Results from this study suggest limited correspondence between these measurement techniques and self-report psychopathy measures. Finally, research conducted on offenders suggests that information obtained from DPS reports may be useful within a broad framework of risk assessment. Further empirical and theoretical implications of the research are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim: To investigate clinical autonomy and Nurse/Physician collaboration among emergency nurses and the relationship between these concepts, personal characteristics and organisational influences. Background: Nurses have been identified as having a significant role in addressing the challenges of providing modern healthcare. Emergency nurses have reported competence in a wide range of emergency care skills. However, there is evidence that Emergency Department (ED) nurses may have lower levels of clinical autonomy than other areas of practice. Levels of clinical autonomy appear to be influenced by levels of collaboration with physicians and the organisations in which nurses work Methods: A descriptive correlational study using a survey design with a purposive convenience sample of 141 ED staff nurses (response 70.9%) from 3 EDs in Ireland. Data were collected using the Dempster Practice Behaviours Scale (DPBS) the Nurse/Physician Collaboration Scale (NPCS) and the newly developed Organisational Influences on Nursing Scale. Demographic information was also sought from participants. Results: Participants were largely female (87%), relatively young (mean age 35.57, SD=7.83) and educated to degree level (48%) or higher (31%) with 40% posessing specialist emergency nursing qualifications. Participants reported moderate levels of clinical autonomy and Nurse/Physician collaboration. No relationships were found between sample characteristics and clinical autonomy and Nurse/Physician collaboration among emergency nurses. Relationships were found between levels of clinical autonomy and Nurse/Physician collaboration (r=-0.395, n=100, p<0.001), and organisational influence on nursing (r=0.455, p<0.001) and also between Nurse/Physician collaboration and organisational influence on nursing (r=-0.413, p<0.001). Discussion: Clinical autonomy of nurses has been linked with quality outcomes in healthcare. The quest for quality in modern healthcare in a challenging environment should acknowledge that strategies need to focus beyond education and skills provision and include essential elements such as Nurse/Physician collaboration and the organisational influence on nursing to ensure the greater involvement of nurses in patient care.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigates how the experiences of Junior Infants are shaped in multigrade classes. Multigrade classes are composed of two or more grades within the same classroom with one teacher having responsibility for the instruction of all grades in this classroom within a time-tabled period (Little, 2001, Mason and Doepner, 1998). The overall aim of the research is to problematize the issues of early childhood pedagogy in multigrade classes in the context of children negotiating identities, positioning and power relations. A Case Study approach was employed to explore the perspectives of the teachers, children and their parents in eight multigrade schools. Concurrent with this, a nation-wide Questionnaire Survey was also conducted which gave a broader context to the case study findings. Findings from the research study suggest that institutional context is vitally important and finding the space to implement pedagogic practices is a highly complex matter for teachers. While a majority of teachers reported the benefits for younger children being in mixed-age settings alongside older children, only a minority of case study school teachers demonstrated how it is possible to promote classroom climates which were provided multiple opportunities for younger children to engage fully in classrooms. The findings reveal constraints on pedagogical practice which included: time pressures within the job, an increase in diversity in pupil population, meeting special needs, large class sizes, high pupil/teacher ratios, and planning/organisation of tasks which intensified the complexities of addressing the needs of children who differ significantly in age, cognitive, social and emotional levels. An emergent and recurrent theme of this study is the representation of Junior Infants as apprentices in their ‘communities of practice’ who contributed in peripheral ways to the practices of their groups (Lave and Wenger, 1991, Wenger, 1998). Through a continuous process of negotiation of meaning, these pupils learned the knowledge and skills within their communities of practice that empowered some to participate more fully than others. The children in their ‘figured worlds’ (Holland, Lachiotte, Skinner and Caine 1998) occupy identities which are influenced by established arrangements of resources and practices within that community as well as by their own agentive actions. Finally, the findings of the study also demonstrate how the dimension of power is central to the exercise of social relations and pedagogical practices in multigrade classes.