2 resultados para TROPHOBLAST

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trophoblasts of the placenta are the frontline cells involved in communication and exchange of materials between the mother and fetus. Within trophoblasts, calcium signalling proteins are richly expressed. Intracellular free calcium ions are a key second messenger, regulating various cellular activities. Transcellular Ca2+ transport through trophoblasts is essential in fetal skeleton formation. Ryanodine receptors (RyRs) are high conductance cation channels that mediate Ca2+ release from intracellular stores to the cytoplasm. To date, the roles of RyRs in trophoblasts have not been reported. By use of reverse transcription PCR and western blotting, the current study revealed that RyRs are expressed in model trophoblast cell lines (BeWo and JEG-3) and in human first trimester and term placental villi. Immunohistochemistry of human placental sections indicated that both syncytiotrophoblast and cytotrophoblast cell layers were positively stained by antibodies recognising RyRs; likewise, expression of RyR isoforms was also revealed in BeWo and JEG-3 cells by immunofluorescence microscopy. In addition, changes in [Ca2+]i were observed in both BeWo and JEG-3 cells upon application of various RyR agonists and antagonists, using fura-2 fluorescent videomicroscopy. Furthermore, endogenous placental peptide hormones, namely angiotensin II, arginine vasopressin and endothelin 1, were demonstrated to increase [Ca2+]i in BeWo cells, and such increases were suppressed by RyR antagonists and by blockers of the corresponding peptide hormone receptors. These findings indicate that 1) multiple RyR subtypes are expressed in human trophoblasts; 2) functional RyRs in BeWo and JEG-3 cells response to both RyR agonists and antagonists; 3) RyRs in BeWo cells mediate Ca2+ release from intracellular store in response to the indirect stimulation by endogenous peptides. These observations suggest that RyR contributes to trophoblastic cellular Ca2+ homeostasis; trophoblastic RyRs are also involved in the functional regulation of human placenta by coupling to endogenous placental peptide-induced signalling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pregnancy-Specific Glycoproteins (PSG) are the most abundant fetally expressed proteins in the maternal bloodstream at term. This multigene family are immunoglobulin superfamily members and are predominantly expressed in the syncytiotrophoblast of human placenta and in giant cells and spongiotrophoblast of rodent placenta. PSGs are encoded by seventeen genes in the mouse and ten genes in the human. Little is known about the function of this gene family, although they have been implicated in immune modulation and angiogenesis through the induction of cytokines such as IL-10 and TGFβ1 in monocytes, and more recently, have been shown to inhibit the platelet-fibrinogen interaction. I provide new information concerning the evolution of the murine Psg genomic locus structure and organisation, through the discovery of a recent gene inversion event of Psg22 within the major murine Psg cluster. In addition to this, I have performed an examination of the expression patterns of individual Psg genes in placental and non-placental tissues. This study centres on Psg22, which is the most abundant murine Psg transcript detected in the first half of pregnancy. A novel alternative splice variant transcript of Psg22 lacking the protein N1-domain was discovered, and similar to the full length isoform induces TGFβ1 in macrophage and monocytic cell lines. The identification of a bidirectional antisense long non-coding RNA transcript directly adjacent to Psg22 and its associated active local chromatin conformation, suggests an interesting epigenetic gene-specific regulatory mechanism that may be responsible for the high level of Psg22 expression relative to the other Psg family members upon trophoblast giant cell differentiation