2 resultados para TRANSCRIPTOMICS
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Flagella confer upon bacteria the ability to move and are therefore organelles of significant bacteriological importance. The innate immune system has evolved to recognise flagellin, (the major protein component of the bacterial flagellar filament). Flagellate microbes can potentially stimulate the immune systems of mammals, and thus have significant immunomodulatory potential. The flagellum-biogenesis genotype and phenotype of Lactobacillus ruminis, an autochthonous intestinal commensal, was studied. The flagellum-biogenesis genotypes of motile enteric Eubacterium and Roseburia species were also investigated. Flagellin proteins were recovered from these commensal species, their amino-termini were sequenced and the proteins were found to be pro-inflammatory, as assessed by measurement of interleukin-8 (IL-8) secretion from human intestinal epithelial cell lines. For L. ruminis, this IL-8 secretion required signalling through Toll Like Receptor 5. A model for the regulation of flagellum-biogenesis in L. ruminis was inferred from transcriptomics data and bioinformatics analyses. Motility gene expression in this species may be under the control of a novel regulator, LRC_15730. Potential promoters for genes encoding flagellin proteins in the Eubacterium and Roseburia genomes analysed were inferred in silico. Relative abundances of the target Eubacterium and Roseburia species in the intestinal microbiota of 25 elderly individuals were determined. These species were found to be variably abundant in these individuals. Motility genes from these species were variably detected in the shotgun metagenome databases generated by the ELDERMET project. This suggested that a greater depth of sequencing, or improved evenness of sequencing, would be required to capture the full diversity of microbial functions for specific target or low abundance species in microbial communities by metagenomics. In summary, this thesis used a functional genomics approach to describe flagellum-mediated motility in selected Gram-positive commensal bacteria. The regulation of flagellum biosynthesis in these species, and the consequences of flagella expression from a host-interaction perspective were also considered.
Resumo:
Inflammation is a complex and highly organised immune response to microbes and tissue injury. Recognition of noxious stimuli by pathogen recognition receptor families including Toll-like receptors results in the expression of hundreds of genes that encode cytokines, chemokines, antimicrobials and regulators of inflammation. Regulation of TLR activation responses is controlled by TLR tolerance which induces a global change in the cellular transcriptional expression profile resulting in gene specific suppression and induction of transcription. In this thesis the plasticity of TLR receptor tolerance is investigated using an in vivo, transcriptomics and functional approach to determine the plasticity of TLR tolerance in the regulation of inflammation. Firstly, using mice deficient in the negative regulator of TLR gene transcription, Bcl-3 (Bcl-3-/-) in a model of intestinal inflammation, we investigated the role of Bcl-3 in the regulation of intestinal inflammatory responses. Our data revealed a novel role for Bcl-3 in the regulation of epithelial cell proliferation and regeneration during intestinal inflammation. Furthermore this data revealed that increased Bcl-3 expression contributes to the development of inflammatory bowel disease (IBD). Secondly, we demonstrate that lipopolysaccharide tolerance is transient and recovery from LPS tolerance results in polarisation of macrophages to a previously un-described hybrid state (RM). In addition, we identified that RM cells have a unique transcriptional profile with suppression and induction of genes specific to this polarisation state. Furthermore, using a functional approach to characterise the outcomes of TLR tolerance plasticity, we demonstrate that cytokine transcription is uncoupled from cytokine secretion in macrophages following recovery from LPS tolerance. Here we demonstrate a novel mechanism of regulation of TLR tolerance through suppression of cytokine secretion in macrophages. We show that TNF-α is alternatively trafficked towards a degradative intracellular compartment. These studies demonstrate that TLR tolerance is a complex immunological response with the plasticity of this state playing an important role in the regulation of inflammation.