3 resultados para TNF-[alpha]
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Cytokine-driven signalling shapes immune homeostasis and guides inflammatory responses mainly through induction of specific gene expression programmes both within and outside the immune cell compartment. These transcriptional outputs are often amplified via cytokine synergy, which sets a stimulatory threshold that safeguards from exacerbated inflammation and immunopathology. In this study, we investigated the molecular mechanisms underpinning synergy between two pivotal Th1 cytokines, IFN-γ and TNF-α, in human intestinal epithelial cells. These two proinflammatory mediators induce a unique state of signalling and transcriptional synergy implicated in processes such as antiviral and antitumour immunity, intestinal barrier and pancreatic β-cell dysfunction. Since its discovery more than 30 years ago, this biological phenomenon remains, however, only partially defined. Here, using a functional genomics approach including RNAi perturbation screens and small-molecule inhibitors, we identified two new regulators of IFN-γ/TNF-α-induced chemokine and antiviral gene and protein expression, a Bcl-2 protein BCL-G and a histone demethylase UTX. We also discovered that IFN-γ/TNF-α synergise to trigger a coordinated shutdown of major receptor tyrosine kinases expression in colon cancer cells. Together, these findings extend our current understanding of how IFN-γ/TNF-α synergy elicits qualitatively and quantitatively distinct outputs in the intestinal epithelium. Given the well-documented role of this synergistic state in immunopathology of various disorders, our results may help to inform the identification of high quality and biologically relevant druggable targets for diseases characterised by an IFN-γ/TNF-α high immune signature
Resumo:
Pregnancy-specific glycoproteins (PSGs) are highly glycosylated secreted proteins encoded by multi-gene families in some placental mammals. They are carcinoembryonic antigen (CEA) family and immunoglobulin (Ig) superfamily members. PSGs are immunomodulatory, and have been demonstrated to possess antiplatelet and pro-angiogenic properties. Low serum levels of these proteins have been correlated with adverse pregnancy outcomes. Objectives: Main research goals of this thesis were: 1). To attempt to replicate previously reported cytokine responses to PSG-treatment of immune cells and subsequently to investigate functionally important amino acids within PSG1. 2). To determine whether candidate receptor, integrin αvβ3, was a binding partner for PSG1 and to investigate whether PSG1 possessed functionality in a leukocyte-endothelial interaction assay. 3). To determine whether proteins generated from recently identified putative PSG genes in the horse shared functional properties with PSGs from other species. Outcomes: 1). Sequential domain deletion of PSG1 as well as mutation of conserved residues within the PSG1 Ndomain did not affect PSG1-induced TGF-β1. The investigated response was subsequently found to be the result of latent TGF-β1 contaminating the recombinant protein. Protein further purified by SEC to remove this showed no induction of TGF-β1. The most N-terminal glycosylation site was demonstrated to have an important role in PSG N domain secretion. PSG1 attenuated LPS-induced IL-6 and TNF-α. Investigations into signalling underpinning this proved inconclusive. 2). Integrin αvβ3 was identified as a novel PSG1 receptor mediating an as yet unknown function. Preliminary investigations into a role for PSGs as inhibitors of leukocyte endothelial interactions showed no effect by PSG1. 3). Horse PSG protein, CEACAM49, was shown to be similarly contaminated by latent TGF-β1 particle and once removed did not demonstrate TGF-β1 release. Interestingly horse PSG did show anti-platelet properties through inhibition of the plateletfibrinogen interaction as previously published for mouse and human PSGs.
Resumo:
The importance of γ-secretase protease activities in development, neurogenesis and the immune system are highlighted by the diversity of its substrates and phenotypic characterization of Presenilin (PS)-deficient transgenic animals. Since the discovery of Amyloid precursor protein (APP) and it’s cleavage by γ-secretase complexes, over 90 other type I membrane proteins have been identified as γ-secretase substrates. We have identified interleukin-1 (IL-1) receptor type I (IL-1R1), toll-like receptor 4 (TLR4) and tumour necrosis factor-α (TNFα) receptor-1 (TNFR1) as novel substrates for - secretase cleavage, which play an important role in innate immunity. In this study, using PS-deficient cells and PS-knockout animal models we examined the role of PS proteins, PS1 and PS2, in IL-1R1-, TLR4- and TNFR1- mediated inflammatory responses. Data presented show that in response to IL- 1β, lipopolysaccharide (LPS) or TNFα, immortalised fibroblasts from PS2- deficient animals have diminished production of specific cytokines and chemokine, with differential reduction in nuclear factor-κB (NF-κB) and (mitogen activated protein kinase) MAPK activities. In contrast, no defect in the response to IL-1β, LPS or TNFα was observed in PS1-deficient immortalised fibroblasts. These observations were confirmed using bone marrow-derived macrophages from PS2-null mice, which also display impaired responsiveness to IL-1β- and LPS, with decreased production of inflammatory cytokines. Furthermore, in whole animal in vivo responses, we show that PS2-deficient animals display ligand (IL-1β, LPS and TNFα)-dependent alterations in the production of specific pro-inflammatory cytokines or chemokines. Importantly, this reduced responsiveness to IL-1β, LPS or TNFα is independent of γ- secretase protease activity and γ-secretase cleavage of TNFR1, IL-1R1 or TLR4. These observations suggest a novel γ-secretase-independent role of PS2 in the regulation of innate immune responsiveness and challenge current concepts regarding the regulation of IL-1β-, LPS- and TNFα-mediated immune signalling.