5 resultados para TITANIUM NITRIDE FILMS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atomic layer deposition (ALD) of highly conformal, silicon-based dielectric thin films has become necessary because of the continuing decrease in feature size in microelectronic devices. The ALD of oxides and nitrides is usually thought to be mechanistically similar, but plasma-enhanced ALD of silicon nitride is found to be problematic, while that of silicon oxide is straightforward. To find why, the ALD of silicon nitride and silicon oxide dielectric films was studied by applying ab initio methods to theoretical models for proposed surface reaction mechanisms. The thermodynamic energies for the elimination of functional groups from different silicon precursors reacting with simple model molecules were calculated using density functional theory (DFT), explaining the lower reactivity of precursors toward the deposition of silicon nitride relative to silicon oxide seen in experiments, but not explaining the trends between precursors. Using more realistic cluster models of amine and hydroxyl covered surfaces, the structures and energies were calculated of reaction pathways for chemisorption of different silicon precursors via functional group elimination, with more success. DFT calculations identified the initial physisorption step as crucial toward deposition and this step was thus used to predict the ALD reactivity of a range of amino-silane precursors, yielding good agreement with experiment. The retention of hydrogen within silicon nitride films but not in silicon oxide observed in FTIR spectra was accounted for by the theoretical calculations and helped verify the application of the model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of III-nitride materials (InN, GaN and AlN) gained huge research momentum after breakthroughs in the production light emitting diodes (LEDs) and laser diodes (LDs) over the past two decades. Last year, the Nobel Prize in Physics was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for inventing a new energy efficient and environmental friendly light source: blue light-emitting diode (LED) from III-nitride semiconductors in the early 1990s. Nowadays, III-nitride materials not only play an increasingly important role in the lighting technology, but also become prospective candidates in other areas, for example, the high frequency (RF) high electron mobility transistor (HEMT) and photovoltaics. These devices require the growth of high quality III-nitride films, which can be prepared using metal organic vapour phase epitaxy (MOVPE). The main aim of my thesis is to study and develop the growth of III-nitride films, including AlN, u-AlGaN, Si-doped AlGaN, and InAlN, serving as sample wafers for fabrication of ultraviolet (UV) LEDs, in order to replace the conventional bulky, expensive and environmentally harmful mercury lamp as new UV light sources. For application to UV LEDs, reducing the threading dislocation density (TDD) in AlN epilayers on sapphire substrates is a key parameter for achieving high-efficiency AlGaNbased UV emitters. In Chapter 4, after careful and systematic optimisation, a working set of conditions, the screw and edge type dislocation density in the AlN were reduced to around 2.2×108 cm-2 and 1.3×109 cm-2 , respectively, using an optimized three-step process, as estimated by TEM. An atomically smooth surface with an RMS roughness of around 0.3 nm achieved over 5×5 µm 2 AFM scale. Furthermore, the motion of the steps in a one dimension model has been proposed to describe surface morphology evolution, especially the step bunching feature found under non-optimal conditions. In Chapter 5, control of alloy composition and the maintenance of compositional uniformity across a growing epilayer surface were demonstrated for the development of u-AlGaN epilayers. Optimized conditions (i.e. a high growth temperature of 1245 °C) produced uniform and smooth film with a low RMS roughness of around 2 nm achieved in 20×20 µm 2 AFM scan. The dopant that is most commonly used to obtain n-type conductivity in AlxGa1-xN is Si. However, the incorporation of Si has been found to increase the strain relaxation and promote unintentional incorporation of other impurities (O and C) during Si-doped AlGaN growth. In Chapter 6, reducing edge-type TDs is observed to be an effective appoach to improve the electric and optical properties of Si-doped AlGaN epilayers. In addition, the maximum electron concentration of 1.3×1019 cm-3 and 6.4×1018 cm-3 were achieved in Si-doped Al0.48Ga0.52N and Al0.6Ga0.4N epilayers as measured using Hall effect. Finally, in Chapter 7, studies on the growth of InAlN/AlGaN multiple quantum well (MQW) structures were performed, and exposing InAlN QW to a higher temperature during the ramp to the growth temperature of AlGaN barrier (around 1100 °C) will suffer a significant indium (In) desorption. To overcome this issue, quasi-two-tempeature (Q2T) technique was applied to protect InAlN QW. After optimization, an intense UV emission from MQWs has been observed in the UV spectral range from 320 to 350 nm measured by room temperature photoluminescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current-voltage characteristics of InP were investigated in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to the growth of passivating films. The relationship between the peak currents and the scan rates suggests that the film formation process is diffusion controlled in both cases. The film thickness required to inhibit current flow was found to be much lower on samples anodized in the sulphide solution. Focused ion beam (FIB) secondary electron images of the surface films show that film cracking of the type reported previously for films grown in (NH4)2S is also observed for films grown in KOH. X-ray and electron diffraction measurements indicate the presence of In2O3 and InPO4 in films grown in KOH and In2S3 in films grown in (NH4)2S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

c-axis oriented ferroelectric bismuth titanate (Bi4Ti 3O12) thin films were grown on (001) strontium titanate (SrTiO3) substrates by an atomic vapor deposition technique. The ferroelectric properties of the thin films are greatly affected by the presence of various kinds of defects. Detailed x-ray diffraction data and transmission electron microscopy analysis demonstrated the presence of out-of-phase boundaries (OPBs). It is found that the OPB density changes appreciably with the amount of titanium injected during growth of the thin films. Piezo-responses of the thin films were measured by piezo-force microscopy. It is found that the in-plane piezoresponse is stronger than the out-of-plane response, due to the strong c-axis orientation of the films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aurivillius phase thin films of Bi5Ti3(FexMn1−x)O15 with x = 1 (Bi5Ti3FeO15) and 0.7 (Bi5Ti3Fe0.7Mn0.3O15) on SiO2-Si(100) and Pt/Ti/SiO2-Si substrates were fabricated by chemical solution deposition. The method was optimized in order to suppress formation of pyrochlore phase Bi2Ti2O7 and improve crystallinity. The structuralproperties of the films were examined by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Optimum crystallinity and pyrochlore phase suppression was achieved by the addition of 15 to 25 mol. % excess bismuth to the sols. Based on this study, 17.5 mol. % excess bismuth was used in the preparation of Bi2Ti2O7-free films of Bi5Ti3FeO15 on SrTiO3(100) and NdGaO3(001) substrates, confirming the suppression of pyrochlore phase using this excess of bismuth. Thirty percent of the Fe3+ ions in Bi5Ti3FeO15 was substituted with Mn3+ ions to form Bi2Ti2O7-free thin films of Bi5Ti3Fe0.7Mn0.3O15 on Pt/Ti/SiO2-Si, SiO2-Si(100), SrTiO3(100), and NdGaO3(001) substrates. Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films on Pt/Ti/SiO2-Si and SiO2-Si(100) substrates were achieved with a higher degree of a-axis orientation compared with the films on SrTiO3(100) and NdGaO3(001) substrates. Room temperature electromechanical and magnetic properties of the thin films were investigated in order to assess the potential of these materials for piezoelectric,ferroelectric, and multiferroic applications. Vertical piezoresponse force microscopy measurements of the films demonstrate that Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films are piezoelectric at room temperature. Room temperature switching spectroscopy-piezoresponse force microscopy measurements in the presence and absence of an applied bias demonstrate local ferroelectric switching behaviour (180°) in the films. Superconducting quantum interference device magnetometry measurements do not show any room temperature ferromagnetic hysteresis down to an upper detection limit of 2.53 × 10−3 emu; and it is concluded, therefore, that such films are not mutiferroic at room temperature. Piezoresponse force microscopy lithography images of Bi5Ti3Fe0.7Mn0.3O15thin films are presented.