3 resultados para T-DNA insertion mutant
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.
Resumo:
Bifidobacteria are claimed to contribute positively to human health through a range of beneficial or probiotic activities, including amelioration of gastrointestinal and metabolic disorders, and therefore this particular group of gastrointestinal commensals has enjoyed increasing industrial and scientific attention in recent years. However, the molecular mechanisms underlying these probiotic mechanisms are still largely unknown, mainly due to the fact that molecular tools for bifidobacteria are rather poorly developed, with many strains lacking genetic accessibility. In this work, we describe the generation of transposon insertion mutants in two bifidobacterial strains, B. breve UCC2003 and B. breve NCFB2258. We also report the creation of the first transposon mutant library in a bifidobacterial strain, employing B. breve UCC2003 and a Tn5-based transposome strategy. The library was found to be composed of clones containing single transposon insertions which appear to be randomly distributed along the genome. The usefulness of the library to perform phenotypic screenings was confirmed through identification and analysis of mutants defective in D-galactose, D-lactose or pullulan utilization abilities.
Resumo:
This thesis describes two newly sequenced B. longum subsp. longum genomes and subsequent comparative analysis with publicly available B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis genomes (Chapter 2). The acquired data revealed a closed pan-genome for this bifidobacterial species and furthermore facilitated the definition of the B. longum core genome. The comparative analysis also highlights differences in the potential metabolic abilities of all three sub-species. Interestingly, phylogenetic analysis of the B. longum core genome indicated the existence of a novel B. longum subspecies. Characterisation of restriction-modification systems from two B. longum subsp. longum strains is described in Chapter 3. These defence mechanisms limit the uptake of genetic material, which was successfully demonstrated for some of the identified systems. When these systems were by-passed by methylation of DNA prior to the transformation procedure, the resulting transformation efficiency of both B. longum subsp. longum strains was increased to a level that allowed for the generation of mutants via homologous recombination. Arabinoxylan metabolism by B. longum subsp. longum NCIMB 8809 was investigated in Chapter 4 of this thesis. Transcriptome analysis allowed the identification of a number of genes involved in the degradation, uptake and utilisation of arabinoxylan. Biochemical analysis revealed that three of the identified genes encode arabinofuranosidase activity. Phenotypic assessment of a number of insertion mutants in genes identified by the transcriptome analysis revealed the essential role of two of these enzymes in arabinoxylan metabolism, and a third enzyme in the metabolism of debranched arabinan. Furthermore, this investigation revealed that B. longum subsp. longum NCIMB 8809 does not completely degrade arabinoxylan, but utilises the arabinose substitutions only, while leaving the xylan backbone untouched.Finally, Chapter 5 outlines that B. longum subsp. longum NCIMB 8809 is capable of removing ferulic and p-coumaric acid substitutions that originate from arabinoxylan. Analysis of the genome sequence led to the identification of a candidate gene for this activity, which was subsequently cloned and expressed in E. coli. Biochemical analysis revealed that the enzyme, designated here as FaeA, is indeed capable of releasing both ferulic and p-coumaric acid from arabinoxylan. Furthermore, it is shown that a derivative of B. longum subsp. longum NCIMB 8809 carrying an insertion mutation in faeA had lost the ability to release ferulic and p-coumaric acid from arabinoxylan, and that growth of this mutant strain is negatively affected when cultivated on growth-limiting levels of arabinoxylan.