7 resultados para System monitoring
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Predicting the evolution of a coastal cell requires the identification of the key drivers of morphology. Soft coastlines are naturally dynamic but severe storm events and even human intervention can accelerate any changes that are occurring. However, when erosive events such as barrier breaching occur with no obvious contributory factors, a deeper understanding of the underlying coastal processes is required. Ideally conclusions on morphological drivers should be drawn from field data collection and remote sensing over a long period of time. Unfortunately, when the Rossbeigh barrier beach in Dingle Bay, County Kerry, began to erode rapidly in the early 2000’s, eventually leading to it breaching in 2008, no such baseline data existed. This thesis presents a study of the morphodynamic evolution of the Inner Dingle Bay coastal system. The study combines existing coastal zone analysis approaches with experimental field data collection techniques and a novel approach to long term morphodynamic modelling to predict the evolution of the barrier beach inlet system. A conceptual model describing the long term evolution of Inner Dingle Bay in 5 stages post breaching was developed. The dominant coastal processes driving the evolution of the coastal system were identified and quantified. A new methodology of long term process based numerical modelling approach to coastal evolution was developed. This method was used to predict over 20 years of coastal evolution in Inner Dingle Bay. On a broader context this thesis utilised several experimental coastal zone data collection and analysis methods such as ocean radar and grain size trend analysis. These were applied during the study and their suitability to a dynamic coastal system was assessed.
Resumo:
The effect of unevenness in a bridge deck for the purpose of Structural Health Monitoring (SHM) under operational conditions is studied in this paper. The moving vehicle is modelled as a single degree of freedom system traversing the damaged beam at a constant speed. The bridge is modelled as an Euler-Bernoulli beam with a breathing crack, simply supported at both ends. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness in the bridge deck considered is modelled using road classification according to ISO 8606:1995(E). Numerical simulations are conducted considering the effects of changing road surface classes from class A - very good to class E - very poor. Cumulant based statistical parameters, based on a new algorithm are computed on stochastic responses of the damaged beam due to passages of the load in order to calibrate the damage. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. The findings of this paper are important for establishing the expectations from different types of road roughness on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring.
Resumo:
Sudden changes in the stiffness of a structure are often indicators of structural damage. Detection of such sudden stiffness change from the vibrations of structures is important for Structural Health Monitoring (SHM) and damage detection. Non-contact measurement of these vibrations is a quick and efficient way for successful detection of sudden stiffness change of a structure. In this paper, we demonstrate the capability of Laser Doppler Vibrometry to detect sudden stiffness change in a Single Degree Of Freedom (SDOF) oscillator within a laboratory environment. The dynamic response of the SDOF system was measured using a Polytec RSV-150 Remote Sensing Vibrometer. This instrument employs Laser Doppler Vibrometry for measuring dynamic response. Additionally, the vibration response of the SDOF system was measured through a MicroStrain G-Link Wireless Accelerometer mounted on the SDOF system. The stiffness of the SDOF system was experimentally determined through calibrated linear springs. The sudden change of stiffness was simulated by introducing the failure of a spring at a certain instant in time during a given period of forced vibration. The forced vibration on the SDOF system was in the form of a white noise input. The sudden change in stiffness was successfully detected through the measurements using Laser Doppler Vibrometry. This detection from optically obtained data was compared with a detection using data obtained from the wireless accelerometer. The potential of this technique is deemed important for a wide range of applications. The method is observed to be particularly suitable for rapid damage detection and health monitoring of structures under a model-free condition or where information related to the structure is not sufficient.
Resumo:
The effects of vehicle speed for Structural Health Monitoring (SHM) of bridges under operational conditions are studied in this paper. The moving vehicle is modelled as a single degree oscillator traversing a damaged beam at a constant speed. The bridge is modelled as simply supported Euler-Bernoulli beam with a breathing crack. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness of the bridge deck is modelled using road classification according to ISO 8606:1995(E). The stochastic description of the unevenness of the road surface is used as an aid to monitor the health of the structure in its operational condition. Numerical simulations are conducted considering the effects of changing vehicle speed with regards to cumulant based statistical damage detection parameters. The detection and calibration of damage at different levels is based on an algorithm dependent on responses of the damaged beam due to passages of the load. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. Sensitivity of calibration values is studied. The findings of this paper are important for establishing the expectations from different vehicle speeds on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring. The identification of bunching of these speed ranges provides guidelines for using the methodology developed in the paper.
Resumo:
Brain injury due to lack of oxygen or impaired blood flow around the time of birth, may cause long term neurological dysfunction or death in severe cases. The treatments need to be initiated as soon as possible and tailored according to the nature of the injury to achieve best outcomes. The Electroencephalogram (EEG) currently provides the best insight into neurological activities. However, its interpretation presents formidable challenge for the neurophsiologists. Moreover, such expertise is not widely available particularly around the clock in a typical busy Neonatal Intensive Care Unit (NICU). Therefore, an automated computerized system for detecting and grading the severity of brain injuries could be of great help for medical staff to diagnose and then initiate on-time treatments. In this study, automated systems for detection of neonatal seizures and grading the severity of Hypoxic-Ischemic Encephalopathy (HIE) using EEG and Heart Rate (HR) signals are presented. It is well known that there is a lot of contextual and temporal information present in the EEG and HR signals if examined at longer time scale. The systems developed in the past, exploited this information either at very early stage of the system without any intelligent block or at very later stage where presence of such information is much reduced. This work has particularly focused on the development of a system that can incorporate the contextual information at the middle (classifier) level. This is achieved by using dynamic classifiers that are able to process the sequences of feature vectors rather than only one feature vector at a time.
Resumo:
Axle bearing damage with possible catastrophic failures can cause severe disruptions or even dangerous derailments, potentially causing loss of human life and leading to significant costs for railway infrastructure managers and rolling stock operators. Consequently the axle bearing damage process has safety and economic implications on the exploitation of railways systems. Therefore it has been the object of intense attention by railway authorities as proved by the selection of this topic by the European Commission in calls for research proposals. The MAXBE Project (http://www.maxbeproject.eu/), an EU-funded project, appears in this context and its main goal is to develop and to demonstrate innovative and efficient technologies which can be used for the onboard and wayside condition monitoring of axle bearings. The MAXBE (interoperable monitoring, diagnosis and maintenance strategies for axle bearings) project focuses on detecting axle bearing failure modes at an early stage by combining new and existing monitoring techniques and on characterizing the axle bearing degradation process. The consortium for the MAXBE project comprises 18 partners from 8 member states, representing operators, railway administrations, axle bearing manufactures, key players in the railway community and experts in the field of monitoring, maintenance and rolling stock. The University of Porto is coordinating this research project that kicked-off in November 2012 and it is completed on October 2015. Both on-board and wayside systems are explored in the project since there is a need for defining the requirement for the onboard equipment and the range of working temperatures of the axle bearing for the wayside systems. The developed monitoring systems consider strain gauges, high frequency accelerometers, temperature sensors and acoustic emission. To get a robust technology to support the decision making of the responsible stakeholders synchronized measurements from onboard and wayside monitoring systems are integrated into a platform. Also extensive laboratory tests were performed to correlate the in situ measurements to the status of the axle bearing life. With the MAXBE project concept it will be possible: to contribute to detect at an early stage axle bearing failures; to create conditions for the operational and technical integration of axle bearing monitoring and maintenance in different European railway networks; to contribute to the standardization of the requirements for the axle bearing monitoring, diagnosis and maintenance. Demonstration of the developed condition monitoring systems was performed in Portugal in the Northern Railway Line with freight and passenger traffic with a maximum speed of 220 km/h, in Belgium in a tram line and in the UK. Still within the project, a tool for optimal maintenance scheduling and a smart diagnostic tool were developed. This paper presents a synthesis of the most relevant results attained in the project. The successful of the project and the developed solutions have positive impact on the reliability, availability, maintainability and safety of rolling stock and infrastructure with main focus on the axle bearing health.
Resumo:
The use of energy harvesting materials for large infrastructure is a promising and growing field. In this regard, the use of such harvesters for the purpose of structural health monitoring of bridges has been proposed in recent times as one of the feasible options since the deployment of them can remove the necessity of an external power source. This paper addresses the performance issue of such monitors over the life-cycle of a bridge as it deteriorates and the live load on the structure increases. In this regard, a Lead Zirconate Titanate (PZT) material is considered as the energy harvesting material and a comparison is carried out over the operational life of a reinforced concrete bridge. The evolution of annual average daily traffic (AADT) is taken into consideration, as is the degradation of the structure over time, due to the effects of corrosion. Evolution of such harvested energy is estimated over the life-cycle of the bridge and the sensitivity of harvested energy is investigated for varying rates of degradation and changes in AADT. The study allows for designing and understanding the potential of energy harvesters as a health monitor for bridges. This paper also illustrates how the natural growth of traffic on a bridge over time can accentuate the identification of damage, which is desirable for an ageing structure. The paper also assesses the impact and effects of deployment of harvesters in a bridge as a part of its design process, considering performance over the entire life-cycle versus a deployment at a certain age of the structure.