4 resultados para Synthase
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The genetics and biochemistry involved in the biodegradation of styrene and the production of polyhydroxyalkanoates in Pseudomonas putida CA-3 have been well characterised to date. Knowledge of the role played by global regulators in controlling these pathways currently represents a critical knowledge gap in this area. Here we report on our efforts to identify such regulators using mini-Tn5 transposon mutagenesis of the P. putida CA-3 genome. The library generated was subjected to phenotypic screening to identify mutants exhibiting a reduced sensitivity to the effects of carbon catabolite repression of aromatic pathway activity. Our efforts identified a clpX disrupted mutant which exhibited wild-type levels of growth on styrene but significantly reduced growth on phenylacetic acid. RT-PCR analysis of key PACoA catabolon genes necessary for phenylacetic acid metabolism, and SDS-PAGE protein profile analyses suggest that no direct alteration of PACoA pathway transcriptional or translational activity was involved. The influence of global regulators affecting the accumulation of PHAs in P. putida CA-3 was also studied. Phenotypic screening of the mini-Tn5 library revealed a gacS sensor kinase gene disruption resulting in the loss of PHA accumulation capacity in P. putida CA-3. Subsequent SDS-PAGE protein analyses of the wild type and gacS mutant strains identified post-transcriptional control of phaC1 synthase as a key point of control of PHA synthesis in P. putida CA-3. Disruption of the gacS gene in another PHA accumulating organism, P. putida S12, also demonstrated a reduction of PHA accumulation capacity. PHA accumulation was observed to be disrupted in the CA-3 gacS mutant under phosphorus limited growth conditions. Over-expression studies in both wild type CA-3 and gacS mutant demonstrated that rsmY over-expression in gacS disrupted P. putida CA-3 is insufficient to restore PHA accumulation in the cell however in wild type cells, over-expression of rsmY results in an altered PHA monomer compositions.
Resumo:
Petrochemical plastics/polymers are a common feature of day to day living as they occur in packaging, furniture, mobile phones, computers, construction equipment etc. However, these materials are produced from non-renewable materials and are resistant to microbial degradation in the environment. Considerable research has therefore been carried out into the production of sustainable, biodegradable polymers, amenable to microbial catabolism to CO2 and H2O. A key group of microbial polyesters, widely considered as optimal replacement polymers, are the Polyhydroxyalkaonates (PHAs). Primary research in this area has focused on using recombinant pure cultures to optimise PHA yields, however, despite considerable success, the high costs of pure culture fermentation have thus far hindered the commercial viability of PHAs thus produced. In more recent years work has begun to focus on mixed cultures for the optimisation of PHA production, with waste incorporations offering optimal production cost reductions. The scale of dairy processing in Ireland, and the high organic load wastewaters generated, represent an excellent potential substrate for bioconversion to PHAs in a mixed culture system. The current study sought to investigate the potential for such bioconversion in a laboratory scale biological system and to establish key operational and microbial characteristics of same. Two sequencing batch reactors were set up and operated along the lines of an enhanced biological phosphate removal (EBPR) system, which has PHA accumulation as a key step within repeated rounds of anaerobic/aerobic cycling. Influents to the reactors varied only in the carbon sources provided. Reactor 1 received artificial wastewater with acetate alone, which is known to be readily converted to PHA in the anaerobic step of EBPR. Reactor 2 wastewater influent contained acetate and skim milk to imitate a dairy processing effluent. Chemical monitoring of nutrient remediation within the reactors as continuously applied and EBPR consistent performances observed. Qualitative analysis of the sludge was carried out using fluorescence microscopy with Nile Blue A lipophillic stain and PHA production was confirmed in both reactors. Quantitative analysis via HPLC detection of crotonic acid derivatives revealed the fluorescence to be short chain length Polyhydroxybutyrate, with biomass dry weight accumulations of 11% and 13% being observed in reactors 1 and 2, respectively. Gas Chromatography-Mass Spectrometry for medium chain length methyl ester derivatives revealed the presence of hydroxyoctanoic, -decanoic and -dodecanoic acids in reactor 1. Similar analyses in reactor 2 revealed monomers of 3-hydroxydodecenoic and 3-hydroxytetradecanoic acids. Investigation of the microbial ecology of both reactors as conducted in an attempt to identify key species potentially contributing to reactor performance. Culture dependent investigations indicated that quite different communities were present in both reactors. Reactor 1 isolates demonstrated the following species distributions Pseudomonas (82%), Delftia acidovorans (3%), Acinetobacter sp. (5%) Aminobacter sp., (3%) Bacillus sp. (3%), Thauera sp., (3%) and Cytophaga sp. (3%). Relative species distributions among reactor 2 profiled isolates were more evenly distributed between Pseudoxanthomonas (32%), Thauera sp (24%), Acinetobacter (24%), Citrobacter sp (8%), Lactococcus lactis (5%), Lysinibacillus (5%) and Elizabethkingia (2%). In both reactors Gammaproteobacteria dominated the cultured isolates. Culture independent 16S rRNA gene analyses revealed differing profiles for both reactors. Reactor 1 clone distribution was as follows; Zooglea resiniphila (83%), Zooglea oryzae (2%), Pedobacter composti (5%), Neissericeae sp. (2%) Rhodobacter sp. (2%), Runella defluvii (3%) and Streptococcus sp. (3%). RFLP based species distribution among the reactor 2 clones was as follows; Runella defluvii (50%), Zoogloea oryzae (20%), Flavobacterium sp. (9%), Simplicispira sp. (6%), Uncultured Sphingobacteria sp. (6%), Arcicella (6%) and Leadbetterella bysophila (3%). Betaproteobacteria dominated the 16S rRNA gene clones identified in both reactors. FISH analysis with Nile Blue dual staining resolved these divergent findings, identifying the Betaproteobacteria as dominant PHA accumulators within the reactor sludges, although species/strain specific allocations could not be made. GC analysis of the sludge had indicated the presence of both medium chain length as well short chain length PHAs accumulating in both reactors. In addition the cultured isolates from the reactors had been identified previously as mcl and scl PHA producers, respectively. Characterisations of the PHA monomer profiles of the individual isolates were therefore performed to screen for potential novel scl-mcl PHAs. Nitrogen limitation driven PHA accumulation in E2 minimal media revealed a greater propensity among isoates for mcl-pHA production. HPLC analysis indicated that PHB production was not a major feature of the reactor isolates and this was supported by the low presence of scl phaC1 genes among PCR screened isolates. A high percentage distribution of phaC2 mcl-PHA synthase genes was recorded, with the majority sharing high percentage homology with class II synthases from Pseudomonas sp. The common presence of a phaC2 homologue was not reflected in the production of a common polymer. Considerable variation was noted in both the monomer composition and ratios following GC analysis. While co-polymer production could not be demonstrated, potentially novel synthase substrate specificities were noted which could be exploited further in the future.
Resumo:
Potatoes (Solanum Tuberosum L.) contain secondary metabolites that may have an impact on human health. The aim of this study was to assess the levels of some of these compounds in a wide range of varieties, including rare, heritage and commercial cultivars. Vitamin C, total carotenoids, phenolics, flavonoids, antioxidant activity and glycoalkaloids were determined, using spectroscopy and chromatography, in the skin and flesh of tubers grown in field trials. Transcript levels of key synthetic enzymes were assessed by qPCR. Accumulation of selected metabolites was higher in the skin than in the flesh of tubers, except ascorbate, which was undetected in the skin. Differences were on average 2.5 to 3-fold for carotenoids, 6-fold for phenolics, 15 to 16-fold for flavonoids, 21-fold for glycoalkaloids and 9 to 10-fold for antioxidant activity. Higher contents of carotenoids were associated with yellow skin or flesh, and higher values of phenolics, flavonoids and antioxidant activity with blue flesh. Variety ‘Burren’ had maxima values of carotenoids in skin and flesh, variety ‘Nicola’ of ascorbate, variety ‘Congo’ of phenolics, flavonoids and antioxidant activity in both tissues, except antioxidant activity in the skin, which was higher in ‘Edzell Blue’. Varieties ‘May Queen’ and ‘International Kidney’ had highest glycoalkaloid content in skin and flesh respectively. The effect of the environment was diverse: year of cultivation was significant for all metabolites, but site of cultivation was not for carotenoids and glycoalkaloids. Levels of expression of phenylalanine ammonia-lyase and chalcone synthase were higher in varieties accumulating high contents of phenolic compounds. However, levels of expression of phytoene synthase and L-galactono-1,4-lactone dehydrogenase were not different between varieties showing contrasting levels of carotenoids and ascorbate respectively. This work will help identify varieties that could be marketed as healthier and the most suitable varieties for extraction of high-value metabolites such as glycoalkaloids.
Resumo:
This thesis was undertaken to investigate the relevance of two bacterial isoprenoid biosynthetic pathways (Mevalonate (MVAL) and 2-C-methyl-D-erythritol 4-phosphate (MEP)) for host-microbe interactions. We determined a significant reduction in microbial diversity in the murine gut microbiota (by next generation sequencing) following oral administration of a common anti-cholesterol drug Rosuvastatin (RSV) that targets mammalian and bacterial HMG-CoA reductase (HMG-R) for inhibition of MVAL formation. In tandem we identified significant hepatic and intestinal off-target alterations to the murine metabolome indicating alterations in inflammation, bile acid profiles and antimicrobial peptide synthesis with implications on community structure of the gastrointestinal microbiota in statin-treated animals. However we found no effect on local Short Chain Fatty Acid biosynthesis (metabolic health marker in our model). We demonstrated direct inhibition of bacterial growth in-vitro by RSV which correlated with reductions in bacterial MVAL formation. However this was only at high doses of RSV. Our observations demonstrate a significant RSV-associated impact on the gut microbiota prompting similar human analysis. Successful deletion of another MVAL pathway enzyme (HMG-CoA synthase (mvaS)) involved in Listeria monocytogenes EGDe isoprenoid biosynthesis determined that the enzyme is non-essential for normal growth and in-vivo pathogenesis of this pathogen. We highlight potential evidence for alternative means of synthesis of the HMG-CoA substrate that could render mvaS activity redundant under our test conditions. Finally, we showed by global gene expression analysis (Massive Analysis of cDNA Ends (MACE RNA-seq) a significant role for the penultimate MEP pathway metabolite (E)-4-hydroxy-3-methyl-2-but-2-enyl pyrophosphate (HMBPP) in significant up regulation of genes of immunity and antigen presentation in THP-1 cells at nanomolar levels. We infected THP-1 cells with wild type or HMBPP under/over-producing L. monoctyogenes EGDe mutants and determined subtle effects of HMBPP upon overall host responses to Listeria infection. Overall our findings provide greater insights regarding bacterial isoprenoid biosynthetic pathways for host-microbe/microbe-host dialogue.