4 resultados para Sustained tolerance
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF) and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.
Resumo:
Treatment of agricultural biodegradable wastes and by-products can be carried out using composting or vermicomposting, or a combination of both treatment methods, to create a growing medium amendment suitable for horticultural use. When compared to traditional compost-maturation, vermicompost-maturation resulted in a more mature growing medium amendment i.e. lower C/N and pH, with increased nutrient content and improved plant growth response, increasing lettuce shoot fresh and dry weight by an average of 15% and 14%, respectively. Vermicomposted horse manure compost was used as a growing medium amendment for lettuce and was found to significantly increase lettuce shoot and root growth, and chlorophyll content. When used as a growing medium amendment for tomato fruit production, vermicomposted spent mushroom compost increased shoot growth and marketable yield, and reduced blossom end rot in two independent studies. Vermicompost addition to peat-based growing media increased marketable yield by an average of 21%. Vermicompost also improved tomato fruit quality parameters such as acidity and sweetness. Fruit sweetness, as measured using Brix value, was significantly increased in fruits grown with 10% or 20% vermicompost addition by 0.2 in truss one and 0.3 in truss two. Fruit acidity (% citric acid) was significantly increased in plants grown with vermicompost by an average of 0.65% in truss one and 0.68% in truss two. These changes in fruit chemical parameters resulted in a higher tomato fruit overall acceptability rating as determined by a consumer acceptance panel. When incorporated into soil, vermicomposted spent mushroom compost increased plant growth and reduced plant stress under conditions of cold stress, but not salinity or heat stress. The addition of 20% vermicompost to cold-stressed plants increased plant growth by an average of 30% and increased chlorophyll fluorescence by an average of 21%. Compared to peat-based growing medium, vermicompost had consistently higher nutrient content, pH, electrical conductivity and bulk density, and when added to a peat-based growing medium, vermicomposted spent mushroom compost altered the microbial community. Vermicompost amendment increased the microbial activity of the growing medium when incorporated initially, and this increased microbial activity was observed for up to four months after incorporation when plants were grown in it. Vermicomposting was shown to be a suitable treatment method for agricultural biodegradable wastes and by-products, with the resulting vermicompost having suitable physical, chemical and biological properties, and resulting in increased plant growth, marketable yield and yield quality, when used as an amendment in peat-based growing medium.
Resumo:
For water depths greater than 60m floating wind turbines will become the most economical option for generating offshore wind energy. Tension mooring stabilised units are one type of platform being considered by the offshore wind energy industry. The complex mooring arrangement used by this type of platform means that the dynamics are greatly effected by offsets in the positioning of the anchors. This paper examines the issue of tendon anchor position tolerances. The dynamic effects of three positional tolerances are analysed in survival state using the time domain FASTLink. The severe impact of worst case anchor positional offsets on platform and turbine survivability is shown. The worst anchor misposition combinations are highlighted and should be strongly avoided. Novel methods to mitigate this issue are presented.
Resumo:
Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease.