2 resultados para Surface coordination complex

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: To study the outcomes for restored primary molar teeth; to examine outcomes in relation to tooth type involved, intracoronal restoration complexity and to the material used. Materials and methods: Design: Retrospective study of primary molar teeth restored by intracoronal restorations. A series of restored primary molar teeth for children aged 6-12 years was studied. The principal outcome measure was failure of initial restoration (re-restoration or extraction). Three hundred patient records were studied to include three equal groups of primary molar teeth restored with amalgam, composite or glass ionomer, respectively. Restorative materials, the restoration type, simple (single surface) or complex (multi-surface) restoration, and tooth notation were recorded. Subsequent interventions were examined. Data were coded and entered into a Microsoft Excel database and analysis undertaken using SPSS v.18. Statistical differences were tested using the c2 test of statistical significance. Results: Of the 300 teeth studied, 61 restoration failures were recorded with 11 of those extracted. No significant differences were found between outcomes for upper first, upper second, lower first or lower second primary molars. Outcomes for simple primary teeth restored by intracoronal restorations were significantly better than those for complex intracoronal restorations (P = 0.042). Teeth originally restored with amalgam accounted for 19.7% of the 61 failures, composite for 29.5%, while teeth restored with glass ionomer represented 50.8% of all restoration failures. The differences were significant (P = 0.012). Conclusions: The majority (79.7%) of the 300 restored primary teeth studied were successful, and 3.7% teeth were extracted. Restorations involving more than one surface had almost twice the failure rate of single surface restorations. The difference was significant. Significant differences in failure rates for the three dental materials studied were recorded. Amalgam had the lowest failure rate while the failure rate with glass ionomer was the highest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu(acac)2 is chemisorbed on TiO2 particles [P-25 (anatase/rutile = 4/1 w/w), Degussa] via coordination by surface Ti–OH groups without elimination of the acac ligand. Post-heating of the Cu(acac)2-adsorbed TiO2 at 773 K yields molecular scale copper(II) oxide clusters on the surface (CuO/TiO2). The copper loading amount (Γ/Cu ions nm–2) is controlled in a wide range by the Cu(acac)2 concentration and the chemisorption–calcination cycle number. Valence band (VB) X-ray photoelectron and photoluminescence spectroscopy indicated that the VB maximum of TiO2 rises up with increasing Γ, while vacant midgap levels are generated. The surface modification gives rise to visible-light activity and concomitant significant increase in UV-light activity for the degradation of 2-naphthol and p-cresol. Prolonging irradiation time leads to the decomposition to CO2, which increases in proportion to irradiation time. The photocatalytic activity strongly depends on the loading, Γ, with an optimum value of Γ for the photocatalytic activity. Electrochemical measurements suggest that the surface CuO clusters promote the reduction of adsorbed O2. First principles density functional theory simulations clearly show that, at Γ < 1, unoccupied Cu 3d levels are generated in the midgap region, and at Γ > 1, the VB maximum rises and the unoccupied Cu 3d levels move to the conduction band minimum of TiO2. These results suggest that visible-light excitation of CuO/TiO2 causes the bulk-to-surface interfacial electron transfer at low coverage and the surface-to-bulk interfacial electron transfer at high coverage. We conclude that the surface CuO clusters enhance the separation of photogenerated charge carriers by the interfacial electron transfer and the subsequent reduction of adsorbed O2 to achieve the compatibility of high levels of visible and UV-light activities.