5 resultados para Subjective expected utility
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
In many real world situations, we make decisions in the presence of multiple, often conflicting and non-commensurate objectives. The process of optimizing systematically and simultaneously over a set of objective functions is known as multi-objective optimization. In multi-objective optimization, we have a (possibly exponentially large) set of decisions and each decision has a set of alternatives. Each alternative depends on the state of the world, and is evaluated with respect to a number of criteria. In this thesis, we consider the decision making problems in two scenarios. In the first scenario, the current state of the world, under which the decisions are to be made, is known in advance. In the second scenario, the current state of the world is unknown at the time of making decisions. For decision making under certainty, we consider the framework of multiobjective constraint optimization and focus on extending the algorithms to solve these models to the case where there are additional trade-offs. We focus especially on branch-and-bound algorithms that use a mini-buckets algorithm for generating the upper bound at each node of the search tree (in the context of maximizing values of objectives). Since the size of the guiding upper bound sets can become very large during the search, we introduce efficient methods for reducing these sets, yet still maintaining the upper bound property. We define a formalism for imprecise trade-offs, which allows the decision maker during the elicitation stage, to specify a preference for one multi-objective utility vector over another, and use such preferences to infer other preferences. The induced preference relation then is used to eliminate the dominated utility vectors during the computation. For testing the dominance between multi-objective utility vectors, we present three different approaches. The first is based on a linear programming approach, the second is by use of distance-based algorithm (which uses a measure of the distance between a point and a convex cone); the third approach makes use of a matrix multiplication, which results in much faster dominance checks with respect to the preference relation induced by the trade-offs. Furthermore, we show that our trade-offs approach, which is based on a preference inference technique, can also be given an alternative semantics based on the well known Multi-Attribute Utility Theory. Our comprehensive experimental results on common multi-objective constraint optimization benchmarks demonstrate that the proposed enhancements allow the algorithms to scale up to much larger problems than before. For decision making problems under uncertainty, we describe multi-objective influence diagrams, based on a set of p objectives, where utility values are vectors in Rp, and are typically only partially ordered. These can be solved by a variable elimination algorithm, leading to a set of maximal values of expected utility. If the Pareto ordering is used this set can often be prohibitively large. We consider approximate representations of the Pareto set based on ϵ-coverings, allowing much larger problems to be solved. In addition, we define a method for incorporating user trade-offs, which also greatly improves the efficiency.
Resumo:
The aim of this research, which focused on the Irish adult population, was to generate information for policymakers by applying statistical analyses and current technologies to oral health administrative and survey databases. Objectives included identifying socio-demographic influences on oral health and utilisation of dental services, comparing epidemiologically-estimated dental treatment need with treatment provided, and investigating the potential of a dental administrative database to provide information on utilisation of services and the volume and types of treatment provided over time. Information was extracted from the claims databases for the Dental Treatment Benefit Scheme (DTBS) for employed adults and the Dental Treatment Services Scheme (DTSS) for less-well-off adults, the National Surveys of Adult Oral Health, and the 2007 Survey of Lifestyle Attitudes and Nutrition in Ireland. Factors associated with utilisation and retention of natural teeth were analysed using count data models and logistic regression. The chi-square test and the student’s t-test were used to compare epidemiologically-estimated need in a representative sample of adults with treatment provided. Differences were found in dental care utilisation and tooth retention by Socio-Economic Status. An analysis of the five-year utilisation behaviour of a 2003 cohort of DTBS dental attendees revealed that age and being female were positively associated with visiting annually and number of treatments. Number of adults using the DTBS increased, and mean number of treatments per patient decreased, between 1997 and 2008. As a percentage of overall treatments, restorations, dentures, and extractions decreased, while prophylaxis increased. Differences were found between epidemiologically-estimated treatment need and treatment provided for those using the DTBS and DTSS. This research confirms the utility of survey and administrative data to generate knowledge for policymakers. Public administrative databases have not been designed for research purposes, but they have the potential to provide a wealth of knowledge on treatments provided and utilisation patterns.
Resumo:
Prenatal well-being can have significant effects on the mother and developing foetus. Positive psychological interventions, including gratitude and mindfulness, consistently demonstrate benefits for well-being in diverse populations. No research has been conducted on gratitude during pregnancy; the few studies of prenatal mindfulness interventions have demonstrated well-being benefits. The current study examined the effects of gratitude and mindfulness interventions on prenatal maternal well-being, cortisol and birth outcomes. Five studies were conducted. Study 1 was a systematic review of mindfulness intervention effects on cortisol; this highlighted potential benefits of mindfulness but the need for rigorous protocols in future research. In Study 2 a gratitude and a mindfulness intervention were developed and evaluated; findings indicate usefulness of two 3 week interventions. Study 3 examined the effects of these interventions in a randomised controlled trial (RCT) of non-pregnant women, before examining a pregnant group. No significant intervention effects were found in this study, potentially due to insufficient power and poor protocol adherence. Changes in expected directions were observed for most outcomes and the potential utility of a combined gratitude and mindfulness intervention was noted. In Study 4 a gratitude during pregnancy (GDP) scale was developed and the reliability of an existing mindfulness measure (MAAS) was examined in a pregnant group. Both scales were found to be suitable and reliable measures in pregnancy. Study 5 incorporated the findings of the previous four studies to examine of the effect of a combined mindfulness and gratitude intervention with a group of pregnant women. Forty-six participants took part in a 5-week RCT that examined intervention effects on prenatal gratitude, mindfulness, happiness, satisfaction with life, social support, prenatal stress, depression and sleep. Findings indicated that the intervention improved sleep quality and that effects for prenatal distress were approaching significance. Issues of attrition and non-compliance to study protocols were problematic and are discussed. In summary, the current thesis highlights the need for robust measurement, and intervention and cortisol sampling protocols in future research, particularly with pregnant groups. Findings also demonstrate tentative benefits of a gratitude and mindfulness intervention during pregnancy.
Resumo:
It is estimated that the quantity of digital data being transferred, processed or stored at any one time currently stands at 4.4 zettabytes (4.4 × 2 70 bytes) and this figure is expected to have grown by a factor of 10 to 44 zettabytes by 2020. Exploiting this data is, and will remain, a significant challenge. At present there is the capacity to store 33% of digital data in existence at any one time; by 2020 this capacity is expected to fall to 15%. These statistics suggest that, in the era of Big Data, the identification of important, exploitable data will need to be done in a timely manner. Systems for the monitoring and analysis of data, e.g. stock markets, smart grids and sensor networks, can be made up of massive numbers of individual components. These components can be geographically distributed yet may interact with one another via continuous data streams, which in turn may affect the state of the sender or receiver. This introduces a dynamic causality, which further complicates the overall system by introducing a temporal constraint that is difficult to accommodate. Practical approaches to realising the system described above have led to a multiplicity of analysis techniques, each of which concentrates on specific characteristics of the system being analysed and treats these characteristics as the dominant component affecting the results being sought. The multiplicity of analysis techniques introduces another layer of heterogeneity, that is heterogeneity of approach, partitioning the field to the extent that results from one domain are difficult to exploit in another. The question is asked can a generic solution for the monitoring and analysis of data that: accommodates temporal constraints; bridges the gap between expert knowledge and raw data; and enables data to be effectively interpreted and exploited in a transparent manner, be identified? The approach proposed in this dissertation acquires, analyses and processes data in a manner that is free of the constraints of any particular analysis technique, while at the same time facilitating these techniques where appropriate. Constraints are applied by defining a workflow based on the production, interpretation and consumption of data. This supports the application of different analysis techniques on the same raw data without the danger of incorporating hidden bias that may exist. To illustrate and to realise this approach a software platform has been created that allows for the transparent analysis of data, combining analysis techniques with a maintainable record of provenance so that independent third party analysis can be applied to verify any derived conclusions. In order to demonstrate these concepts, a complex real world example involving the near real-time capturing and analysis of neurophysiological data from a neonatal intensive care unit (NICU) was chosen. A system was engineered to gather raw data, analyse that data using different analysis techniques, uncover information, incorporate that information into the system and curate the evolution of the discovered knowledge. The application domain was chosen for three reasons: firstly because it is complex and no comprehensive solution exists; secondly, it requires tight interaction with domain experts, thus requiring the handling of subjective knowledge and inference; and thirdly, given the dearth of neurophysiologists, there is a real world need to provide a solution for this domain
Resumo:
This research investigates whether a reconfiguration of maternity services, which collocates consultant- and midwifery-led care, reflects demand and value for money in Ireland. Qualitative and quantitative research is undertaken to investigate demand and an economic evaluation is performed to evaluate the costs and benefits of the different models of care. Qualitative research is undertaken to identify women’s motivations when choosing place of delivery. These data are further used to inform two stated preference techniques: a discrete choice experiment (DCE) and contingent valuation method (CVM). These are employed to identify women’s strengths of preferences for different features of care (DCE) and estimate women’s willingness to pay for maternity care (CVM), which is used to inform a cost-benefit analysis (CBA) on consultant- and midwifery-led care. The qualitative research suggests women do not have a clear preference for consultant or midwifery-led care, but rather a hybrid model of care which closely resembles the Domiciliary Care In and Out of Hospital (DOMINO) scheme. Women’s primary concern during care is safety, meaning women would only utilise midwifery-led care when co-located with consultant-led care. The DCE also finds women’s preferred package of care closely mirrors the DOMINO scheme with 39% of women expected to utilise this service. Consultant- and midwifery-led care would then be utilised by 34% and 27% of women, respectively. The CVM supports this hierarchy of preferences where consultant-led care is consistently valued more than midwifery-led care – women are willing to pay €956.03 for consultant-led care and €808.33 for midwifery-led care. A package of care for a woman availing of consultant- and midwifery-led care is estimated to cost €1,102.72 and €682.49, respectively. The CBA suggests both models of care are cost-beneficial and should be pursued in Ireland. This reconfiguration of maternity services would maximise women’s utility, while fulfilling important objectives of key government policy.