4 resultados para Strain and stress fields
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Objective: The effect of work on blood pressure (BP) in a general population with appropriate adjustment for confounders is not well defined. High job control has been found to be associated with lower BP and with nocturnal BP dipping. However, with older workers this may be compromised and has not been studied extensively. Methods: A cross-sectional study was carried out on a primary care-based sample (N=2047) aged 50–69 years. Data were collected on sociodemographic factors, medication, clinic, and ambulatory blood pressure. Job control was measured using two scales from the Copenhagen Psychosocial Questionnaire (COPSOQ) (possibility for development and influence at work). Nocturnal systolic BP (SBP) dipping was the reduction in SBP from day- to night-time using ambulatory SBP readings. Results: In general, BP increased with age, male gender, and higher body mass index. Workers with high influence at work and high possibility for development were more likely to have high asleep SBP [odds ratio (OR) 2.13, 95% confidence interval (95% CI) 1.05–4.34, P=0.04], (OR 2.27, 95% CI 1.11–4.66, P=0.03) respectively. Influence at work and awake BP were inversely associated: awake SBP (OR 2.44, 95% CI 1.35–4.41, P<0.01), awake DBP (OR 2.42, 95% CI 1.24–4.72, P=0.01). No association was seen between job control and nocturnal SBP dipping. Conclusion: Older workers with high job control may be more at risk of cardiovascular disease resulting from high day- and night-time BP with no evidence of nocturnal dipping.
Resumo:
Background: Workplace demographics are changing in many European countries with a higher proportion of older workers in employment. Research has shown that there is an association between job strain and cardiovascular disease, but this relationship is unclear for the older worker. Aims: To investigate the association between job strain and a coronary event comparing younger and older male workers. Methods: Cases with a first-time coronary event were recruited from four coronary/intensive care units (1999-2001). Matched controls were recruited from the case's general practitioner surgery. Physical measurements were taken and self-administered questionnaires completed with questions on job characteristics, job demands and control. Unconditional logistic regression was carried out adjusting for classical cardiovascular risk factors. Results: There were 227 cases and 277 matched controls. Age stratified analyses showed a clear difference between younger (= 50 years) workers with regard to the exposure of job strain (job demands and control) and the association between these factors and cardiovascular disease. Older workers who had a coronary event were four times as likely to have high job strain [OR = 4.09 (1.29-13.02)] and more likely to report low job control [ OR = 0.83 (0.72-0.95)]. Conclusions: Job control emerged as a potential protective factor for heart disease and this evidence was stronger in the older male worker. Nevertheless, they were significantly more likely to have job strain. These results suggest that older workers may be more susceptible to job strain.
Resumo:
The mechanisms governing fetal development follow a tightly regulated pattern of progression such that interference at any one particular stage is likely to have consequences for all other stages of development in the physiological system that has been affected thereafter. These disturbances can take the form of many different events but two of the most common and widely implicated in causing detrimental effects to the developing fetus are maternal immune activation (MIA) and maternal stress. MIA has been shown to cause an increase in circulating proinflammatory cytokines in both the maternal and fetal circulation. This increase in proinflammatory mediators in the fetus is thought to occur by fetal production rather than through exchange between the maternal-fetal interface. In the case of maternal stress it is increased levels of stress related hormones such as cortisol/corticosterone which is thought to elicit the detrimental effects on fetal development. In the case of both maternal infection and stress the timing and nature of the insult generally dictates the severity and type of effects seen in affected offspring. We investigated the effect of a proinflammatory environment on neural precursor cells of which exposure resulted in a significant decrease in the normal rate of proliferation of NPCs in culture but did not have any effect on cell survival. These effects were seen to be age dependent. Using a restraint stress model we investigated the effects of prenatal stress on the development of a number of different physiological systems in the same cohort of animals. PNS animals exhibited a number of aberrant changes in cardiovascular function with altered responses to stress and hypertension, modifications in respiratory responses to hypercapnic and hypoxic challenges and discrepancies in gastrointestinal innervation. Taken together these findings suggest that both maternal infection and maternal stress are detrimental to the normal development of the fetus.
Resumo:
Researchers interested in the neurobiology of the acute stress response in humans require a valid and reliable acute stressor that can be used under experimental conditions. The Trier Social Stress Test (TSST) provides such a testing platform. It induces stress by requiring participants to make an interview-style presentation, followed by a surprise mental arithmetic test, in front of an interview panel who do not provide feedback or encouragement. In this review, we outline the methodology of the TSST, and discuss key findings under conditions of health and stress-related disorder. The TSST has unveiled differences in males and females, as well as different age groups, in their neurobiological response to acute stress. The TSST has also deepened our understanding of how genotype may moderate the cognitive neurobiology of acute stress, and exciting new inroads have been made in understanding epigenetic contributions to the biological regulation of the acute stress response using the TSST. A number of innovative adaptations have been developed which allow for the TSST to be used in group settings, with children, in combination with brain imaging, and with virtual committees. Future applications may incorporate the emerging links between the gut microbiome and the stress response. Future research should also maximise use of behavioural data generated by the TSST. Alternative acute stress paradigms may have utility over the TSST in certain situations, such as those that require repeat testing. Nonetheless, we expect that the TSST remains the gold standard for examining the cognitive neurobiology of acute stress in humans.