5 resultados para Step count
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Objectives: To measure the step-count accuracy of an ankle-worn accelerometer, a thigh-worn accelerometer and one pedometer in older and frail inpatients. Design: Cross-sectional design study. Setting: Research room within a hospital. Participants: Convenience sample of inpatients aged ≥65 years, able to walk 20 metres unassisted, with or without a walking-aid. Intervention: Patients completed a 40-minute programme of predetermined tasks while wearing the three motion sensors simultaneously. Video-recording of the procedure provided the criterion measurement of step-count. Main Outcome Measures: Mean percentage (%) errors were calculated for all tasks, slow versus fast walkers, independent versus walking-aid-users, and over shorter versus longer distances. The Intra-class Correlation was calculated and accuracy was visually displayed by Bland-Altman plots. Results: Thirty-two patients (78.1 ±7.8 years) completed the study. Fifteen were female and 17 used walking-aids. Their median speed was 0.46 m/sec (interquartile range, IQR 0.36-0.66). The ankle-worn accelerometer overestimated steps (median 1% error, IQR -3 to 13). The other motion sensors underestimated steps (40% error (IQR -51 to -35) and 38% (IQR -93 to -27), respectively). The ankle-worn accelerometer proved more accurate over longer distances (3% error, IQR 0 to 9), than shorter distances (10%, IQR -23 to 9). Conclusions: The ankle-worn accelerometer gave the most accurate step-count measurement and was most accurate over longer distances. Neither of the other motion sensors had acceptable margins of error.
Resumo:
Evidence suggests that inactivity during a hospital stay is associated with poor health outcomes in older medical inpatients. We aimed to estimate the associations of average daily step-count (walking) in hospital with physical performance and length of stay in this population. Medical in-patients aged ⩾65 years, premorbidly mobile, with an anticipated length of stay ⩾3 d, were recruited. Measurements included average daily step-count, continuously recorded until discharge, or for a maximum of 7 d (Stepwatch Activity Monitor); co-morbidity (CIRS-G); frailty (SHARE F-I); and baseline and end-of-study physical performance (short physical performance battery). Linear regression models were used to estimate associations between step-count and end-of-study physical performance or length of stay. Length of stay was log transformed in the first model, and step-count was log transformed in both models. Similar models were used to adjust for potential confounders. Data from 154 patients (mean 77 years, SD 7.4) were analysed. The unadjusted models estimated for each unit increase in the natural log of stepcount, the natural log of length of stay decreased by 0.18 (95% CI −0.27 to −0.09). After adjustment of potential confounders, while the strength of the inverse association was attenuated, it remained significant (βlog(steps) = −0.15, 95%CI −0.26 to −0.03). The back-transformed result suggested that a 50% increase in step-count was associated with a 6% shorter length of stay. There was no apparent association between step-count and end-of-study physical performance once baseline physical performance was adjusted for. The results indicate that step-count is independently associated with hospital length of stay, and merits further investigation.
Resumo:
The purpose of this review was to examine the utility and accuracy of commercially available motion sensors to measure step-count and time spent upright in frail older hospitalized patients. A database search (CINAHL and PubMed, 2004–2014) and a further hand search of papers’ references yielded 24 validation studies meeting the inclusion criteria. Fifteen motion sensors (eight pedometers, six accelerometers, and one sensor systems) have been tested in older adults. Only three have been tested in hospital patients, two of which detected postures and postural changes accurately, but none estimated step-count accurately. Only one motion sensor remained accurate at speeds typical of frail older hospitalized patients, but it has yet to be tested in this cohort. Time spent upright can be accurately measured in the hospital, but further validation studies are required to determine which, if any, motion sensor can accurately measure step-count.
Resumo:
Avalanche Photodiodes (APDs) have been used in a wide range of low light sensing applications such as DNA sequencing, quantum key distribution, LIDAR and medical imaging. To operate the APDs, control circuits are required to achieve the desired performance characteristics. This thesis presents the work on development of three control circuits including a bias circuit, an active quench and reset circuit and a gain control circuit all of which are used for control and performance enhancement of the APDs. The bias circuit designed is used to bias planar APDs for operation in both linear and Geiger modes. The circuit is based on a dual charge pumps configuration and operates from a 5 V supply. It is capable of providing milliamp load currents for shallow-junction planar APDs that operate up to 40 V. With novel voltage regulators, the bias voltage provided by the circuit can be accurately controlled and easily adjusted by the end user. The circuit is highly integrable and provides an attractive solution for applications requiring a compact integrated APD device. The active quench and reset circuit is designed for APDs that operate in Geiger-mode and are required for photon counting. The circuit enables linear changes in the hold-off time of the Geiger-mode APD (GM-APD) from several nanoseconds to microseconds with a stable setting step of 6.5 ns. This facilitates setting the optimal `afterpulse-free' hold-off time for any GM-APD via user-controlled digital inputs. In addition this circuit doesn’t require an additional monostable or pulse generator to reset the detector, thus simplifying the circuit. Compared to existing solutions, this circuit provides more accurate and simpler control of the hold-off time while maintaining a comparable maximum count-rate of 35.2 Mcounts/s. The third circuit designed is a gain control circuit. This circuit is based on the idea of using two matched APDs to set and stabilize the gain. The circuit can provide high bias voltage for operating the planar APD, precisely set the APD’s gain (with the errors of less than 3%) and compensate for the changes in the temperature to maintain a more stable gain. The circuit operates without the need for external temperature sensing and control electronics thus lowering the system cost and complexity. It also provides a simpler and more compact solution compared to previous designs. The three circuits designed in this project were developed independently of each other and are used for improving different performance characteristics of the APD. Further research on the combination of the three circuits will produce a more compact APD-based solution for a wide range of applications.
Resumo:
Copper dimethylamino-2-propoxide [Cu(dmap)2] is used as a precursor for low-temperature atomic layer deposition (ALD) of copper thin films. Chemisorption of the precursor is the necessary first step of ALD, but it is not known in this case whether there is selectivity for adsorption sites, defects, or islands on the substrate. Therefore, we study the adsorption of the Cu(dmap)2 molecule on the different sites on flat and rough Cu surfaces using PBE, PBE-D3, optB88-vdW, and vdW-DF2 methods. We found the relative order of adsorption energies for Cu(dmap)2 on Cu surfaces is Eads (PBE-D3) > Eads (optB88-vdW) > Eads (vdW-DF2) > Eads (PBE). The PBE and vdW-DF2 methods predict one chemisorption structure, while optB88-vdW predicts three chemisorption structures for Cu(dmap)2 adsorption among four possible adsorption configurations, whereas PBE-D3 predicts a chemisorbed structure for all the adsorption sites on Cu(111). All the methods with and without van der Waals corrections yield a chemisorbed molecule on the Cu(332) step and Cu(643) kink because of less steric hindrance on the vicinal surfaces. Strong distortion of the molecule and significant elongation of Cu–N bonds are predicted in the chemisorbed structures, indicating that the ligand–Cu bonds break during the ALD of Cu from Cu(dmap)2. The molecule loses its initial square-planar structure and gains linear O–Cu–O bonding as these atoms attach to the surface. As a result, the ligands become unstable and the precursor becomes more reactive to the coreagent. Charge redistribution mainly occurs between the adsorbate O–Cu–O bond and the surface. Bader charge analysis shows that electrons are donated from the surface to the molecule in the chemisorbed structures, so that the Cu center in the molecule is partially reduced.