14 resultados para Steketee, Frank

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this paper is to investigate the effect of the pad size ratio between the chip and board end of a solder joint on the shape of that solder joint in combination with the solder volume available. The shape of the solder joint is correlated to its reliability and thus of importance. For low density chip bond pad applications Flip Chip (FC) manufacturing costs can be kept down by using larger size board pads suitable for solder application. By using “Surface Evolver” software package the solder joint shapes associated with different size/shape solder preforms and chip/board pad ratios are predicted. In this case a so called Flip-Chip Over Hole (FCOH) assembly format has been used. Assembly trials involved the deposition of lead-free 99.3Sn0.7Cu solder on the board side, followed by reflow, an underfill process and back die encapsulation. During the assembly work pad off-sets occurred that have been taken into account for the Surface Evolver solder joint shape prediction and accurately matched the real assembly. Overall, good correlation was found between the simulated solder joint shape and the actual fabricated solder joint shapes. Solder preforms were found to exhibit better control over the solder volume. Reflow simulation of commercially available solder preform volumes suggests that for a fixed stand-off height and chip-board pad ratio, the solder volume value and the surface tension determines the shape of the joint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex systems, from environmental behaviour to electronics reliability, can now be monitored with Wireless Sensor Networks (WSN), where multiple environmental sensors are deployed in remote locations. This ensures aggregation and reading of data, at lower cost and lower power consumption. Because miniaturisation of the sensing system is hampered by the fact that discrete sensors and electronics consume board area, the development of MEMS sensors offers a promising solution. At Tyndall, the fabrication flow of multiple sensors has been made compatible with CMOS circuitry to further reduce size and cost. An ideal platform on which to host these MEMS environmental sensors is the Tyndall modular wireless mote. This paper describes the development and test of the latest sensors incorporating temperature, humidity, corrosion, and gas. It demonstrates their deployment on the Tyndall platform, allowing real-time readings, data aggregation and cross-correlation capabilities. It also presents the design of the next generation sensing platform using the novel 10mm wireless cube developed by Tyndall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the design and the manufacturing of an integrated DCDC converter, which respects the specificity of sensor node network: compactness, high efficiency in acquisition and transmission modes, and compatibility with miniature Lithium batteries. A novel integrated circuit (ASIC) has been designed and manufactured to provide regulated Voltage to the sensor node from miniaturized, thin film Lithium batteries. Then, a 3D integration technique has been used to integrate this ASIC in a 3 layers stack with high efficiency passives components, mixing the wafer level technologies from two different research institutions. Electrical results have demonstrated the feasibility of this integrated system and experiments have shown significant improvements in the case of oscillations in regulated voltage. However, stability of this output voltage toward the input voltage has still to be improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ever increasing demand for broadband communications requires sophisticated devices. Photonic integrated circuits (PICs) are an approach that fulfills those requirements. PICs enable the integration of different optical modules on a single chip. Low loss fiber coupling and simplified packaging are key issues in keeping the price of PICs at a low level. Integrated spot size converters (SSC) offer an opportunity to accomplish this. Design, fabrication and characterization of SSCs based on an asymmetric twin waveguide (ATG) at a wavelength of 1.55 μm are the main elements of this dissertation. It is theoretically and experimentally shown that a passive ATG facilitates a polarization filter mechanism. A reproducible InP process guideline is developed that achieves vertical waveguides with smooth sidewalls. Birefringence and resonant coupling are used in an ATG to enable a polarization filtering and splitting mechanism. For the first time such a filter is experimentally shown. At a wavelength of 1610 nm a power extinction ratio of (1.6 ± 0.2) dB was measured for the TE- polarization in a single approximately 372 μm long TM- pass polarizer. A TE-pass polarizer with a similar length was demonstrated with a TM/TE-power extinction ratio of (0.7 ± 0.2) dB at 1610 nm. The refractive indices of two different InGaAsP compositions, required for a SSC, are measured by the reflection spectroscopy technique. A SSC layout for dielectric-free fabricated compact photodetectors is adjusted to those index values. The development and the results of the final fabrication procedure for the ATG concept are outlined. The etch rate, sidewall roughness and selectivity of a Cl2/CH4/H2 based inductively coupled plasma (ICP) etch are investigated by a design of experiment approach. The passivation effect of CH4 is illustrated for the first time. Conditions are determined for etching smooth and vertical sidewalls up to a depth of 5 μm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A small proportion of harmful algae produce toxins which are harmful to human health. Strict monitoring programmes are in place within Ireland and the EU to effectively manage risk to human consumers of shellfish species that have accumulated marine biotoxins in their tissues. However, little is known about the impacts of HABs on shellfish health. This study used Solid Phase Adsorption and Toxin Tracking (SPATT) for the passive sampling of algal biotoxins at Lough Hyne Marine Nature Reserve in West Cork, Ireland. Spatial and temporal monitoring of the incidence of a wide range of lipophilic toxins was assessed over a 4-month period. Active sampling accumulated sufficient quantities of toxin for use in subsequent experimentation. In addition to commonly occurring Diarrhetic Shellfish Poisoning (DSP) toxins, Dinophysis toxin-1 and Pinnatoxin-G were both detected in the samples. This is the first identification of these latter two toxins in Irish waters. The effects of the DSP toxin okadaic acid (OA) were investigated on three shellfish species: Mytilus edulis, Ruditapes philippinarum and Crassostrea gigas. Histological examination of the gill, mantle and hepatopancreas tissues revealed varying intensity of damage depending both on the tissue type and the species involved. At the cellular level, flow cytometric analysis of the differential cell population distribution was assessed. No change in cell population distribution was observed in Mytilus edulis or Ruditapes philippinarum, however significant changes were observed in Crassostrea gigas granulocytes at the lower levels of toxin exposure. This indicated a chemically-induced response to OA. DNA fragmentation was measured in the haemolymph and hepatopancreas cells post OA-exposure in Mytilus edulis and Crassostrea gigas. A significant increase in DNA fragmentation was observed in both species over time, even at the lowest OA concentrations. DNA fragmentation could be due to genotoxicity of OA and/or to the induction of cell apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis covers both the packaging of silicon photonic devices with fiber inputs and outputs as well as the integration of laser light sources with these same devices. The principal challenge in both of these pursuits is coupling light into the submicrometer waveguides that are the hallmark of silicon-on-insulator (SOI) systems. Previous work on grating couplers is leveraged to design new approaches to bridge the gap between the highly-integrated domain of silicon, the Interconnected world of fiber and the active region of III-V materials. First, a novel process for the planar packaging of grating couplers with fibers is explored in detail. This technology allows the creation of easy-to-use test platforms for laser integration and also stands on its own merits as an enabling technology for next-generation silicon photonics systems. The alignment tolerances of this process are shown to be well-suited to a passive alignment process and for wafer-scale assembly. Furthermore, this technology has already been used to package demonstrators for research partners and is included in the offerings of the ePIXfab silicon photonics foundry and as a design kit for PhoeniX Software’s MaskEngineer product. After this, a process for hybridly integrating a discrete edge-emitting laser with a silicon photonic circuit using near-vertical coupling is developed and characterized. The details of the various steps of the design process are given, including mechanical, thermal, optical and electrical steps. The interrelation of these design domains is also discussed. The construction process for a demonstrator is outlined, and measurements are presented of a series of single-wavelength Fabry-Pérot lasers along with a two-section laser tunable in the telecommunications C-band. The suitability and potential of this technology for mass manufacture is demonstrated, with further opportunities for improvement detailed and discussed in the conclusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model for understanding the formation and propagation of modes in curved optical waveguides is developed. A numerical method for the calculation of curved waveguide mode profiles and propagation constants in two dimensional waveguides is developed, implemented and tested. A numerical method for the analysis of propagation of modes in three dimensional curved optical waveguides is developed, implemented and tested. A technique for the design of curved waveguides with reduced transition loss is presented. A scheme for drawing these new waveguides and ensuring that they have constant width is also provided. Claims about the waveguide design technique are substantiated through numerical simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study investigated the genotoxic potential of the marine biotoxins okadaic acid (OA) and azaspiracids (AZAs). Harmful algae blooms (HABs) are an increasing global problem with implications for the ecosystem, economy and human health. Most data available on human intoxication are based on acute toxicity. To date, limited data has been published on possible long term effects, carcinogenicity and genotoxicity. To investigate genotoxicity in the present study, DNA fragmentation was detected using the COMET assay. In contrast to most other available studies, two further endpoints were included. The Trypan Blue Exclusion assay was used to provide information on possible cytotoxicity and assess the right concentration range. Flow cytometer analysis was included to detect the possible involvement of apoptotic processes. In house background data for all endpoints were established using positive controls. Three different cell lines, Jurkat T cells, CaCo-2 cells and HepG-2 cells, representing the main target organs, were exposed to OA and AZA1-3 at different concentrations and exposure times. Data obtained from the COMET assay showed an increase in DNA fragmentation for all phycotoxins, indicating a modest genotoxic effect. However, the data obtained from the Trypan Blue Exclusion assay showed a clear reduction in cell viability and cell number, indicating the involvement of cytotoxic and/or apoptotic processes. This is supported by data obtained by flow cytometer analysis. All phycotoxins investigated showed signs of early/late apoptosis. Therefore, the combined observations made in the present study indicate that OA and AZA1-3 are not genotoxic per se. Apoptotic processes appear to make a major contribution to the observed DNA fragmentation. The information obtained in this study stresses the importance of inclusion of additional endpoints and appropriate positive controls in genotoxicity studies. Furthermore, these data can assist in future considerations on risk assessment, especially regarding repeated exposure and exposure at sub-clinical doses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of biological effect monitoring for the detection of environmental chemical exposure in domestic animals is still in its infancy. This study investigated blood sample preparations in vitro for their use in biological effect monitoring. When peripheral blood mononuclear cells (PBMCs), isolated following the collection of multiple blood samples from sheep in the field, were cryopreserved and subsequently cultured for 24 hours a reduction in cell viability (<80%) was attributed to delays in the processing following collection. Alternative blood sample preparations using rat and sheep blood demonstrated that 3 to 5 hour incubations can be undertaken without significant alterations in the viability of the lymphocytes; however, a substantial reduction in viability was observed after 24 hours in frozen blood. Detectable levels of early and late apoptosis as well as increased levels of ROS were detectable in frozen sheep blood samples. The addition of ascorbic acid partly reversed this effect and reduced the loss in cell viability. The response of the rat and sheep blood sample preparations to genotoxic compounds ex vivo showed that EMS caused comparable dose-dependent genotoxic effects in all sample preparations (fresh and frozen) as detected by the Comet assay. In contrast, the effects of CdCl2 were dependent on the duration of exposure as well as the sample preparation. The analysis of leukocyte subsets in frozen sheep blood showed no alterations in the percentages of T and B lymphocytes but led to a major decrease in the percentage of granulocytes compared to those in the fresh samples. The percentages of IFN-γ and IL-4 but not IL-6 positive cells were comparable between fresh and frozen sheep blood after 4 hour stimulation with phorbol 12-myrisate 13-acetate and ionomycin (PMA+I). These results show that frozen blood gives comparable responses to fresh blood samples in the toxicological and immune assays used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for optical bandwidth continues to increase year on year and is being driven primarily by entertainment services and video streaming to the home. Current photonic systems are coping with this demand by increasing data rates through faster modulation techniques, spectrally efficient transmission systems and by increasing the number of modulated optical channels per fibre strand. Such photonic systems are large and power hungry due to the high number of discrete components required in their operation. Photonic integration offers excellent potential for combining otherwise discrete system components together on a single device to provide robust, power efficient and cost effective solutions. In particular, the design of optical modulators has been an area of immense interest in recent times. Not only has research been aimed at developing modulators with faster data rates, but there has also a push towards making modulators as compact as possible. Mach-Zehnder modulators (MZM) have proven to be highly successful in many optical communication applications. However, due to the relatively weak electro-optic effect on which they are based, they remain large with typical device lengths of 4 to 7 mm while requiring a travelling wave structure for high-speed operation. Nested MZMs have been extensively used in the generation of advanced modulation formats, where multi-symbol transmission can be used to increase data rates at a given modulation frequency. Such nested structures have high losses and require both complex fabrication and packaging. In recent times, it has been shown that Electro-absorption modulators (EAMs) can be used in a specific arrangement to generate Quadrature Phase Shift Keying (QPSK) modulation. EAM based QPSK modulators have increased potential for integration and can be made significantly more compact than MZM based modulators. Such modulator designs suffer from losses in excess of 40 dB, which limits their use in practical applications. The work in this thesis has focused on how these losses can be reduced by using photonic integration. In particular, the integration of multiple lasers with the modulator structure was considered as an excellent means of reducing fibre coupling losses while maximising the optical power on chip. A significant difficultly when using multiple integrated lasers in such an arrangement was to ensure coherence between the integrated lasers. The work investigated in this thesis demonstrates for the first time how optical injection locking between discrete lasers on a single photonic integrated circuit (PIC) can be used in the generation of coherent optical signals. This was done by first considering the monolithic integration of lasers and optical couplers to form an on chip optical power splitter, before then examining the behaviour of a mutually coupled system of integrated lasers. By operating the system in a highly asymmetric coupling regime, a stable phase locking region was found between the integrated lasers. It was then shown that in this stable phase locked region the optical outputs of each laser were coherent with each other and phase locked to a common master laser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photonic integration has become an important research topic in research for applications in the telecommunications industry. Current optical internet infrastructure has reached capacity with current generation dense wavelength division multiplexing (DWDM) systems fully occupying the low absorption region of optical fibre from 1530 nm to 1625 nm (the C and L bands). This is both due to an increase in the number of users worldwide and existing users demanding more bandwidth. Therefore, current research is focussed on using the available telecommunication spectrum more efficiently. To this end, coherent communication systems are being developed. Advanced coherent modulation schemes can be quite complex in terms of the number and array of devices required for implementation. In order to make these systems viable both logistically and commercially, photonic integration is required. In traditional DWDM systems, arrayed waveguide gratings (AWG) are used to both multiplex and demultiplex the multi-wavelength signal involved. AWGs are used widely as they allow filtering of the many DWDM wavelengths simultaneously. However, when moving to coherent telecommunication systems such as coherent optical frequency division multiplexing (OFDM) smaller FSR ranges are required from the AWG. This increases the size of the device which is counter to the miniaturisation which integration is trying to achieve. Much work was done with active filters during the 1980s. This involved using a laser device (usually below threshold) to allow selective wavelength filtering of input signals. By using more complicated cavity geometry devices such as distributed feedback (DFB) and sampled grating distributed Bragg gratings (SG-DBR) narrowband filtering is achievable with high suppression (>30 dB) of spurious wavelengths. The active nature of the devices also means that, through carrier injection, the index can be altered resulting in tunability of the filter. Used above threshold, active filters become useful in filtering coherent combs. Through injection locking, the coherence of the filtered wavelengths with the original comb source is retained. This gives active filters potential application in coherent communication system as demultiplexers. This work will focus on the use of slotted Fabry-Pérot (SFP) semiconductor lasers as active filters. Experiments were carried out to ensure that SFP lasers were useful as tunable active filters. In all experiments in this work the SFP lasers were operated above threshold and so injection locking was the mechanic by which the filters operated. Performance of the lasers under injection locking was examined using both single wavelength and coherent comb injection. In another experiment two discrete SFP lasers were used simultaneously to demultiplex a two-line coherent comb. The relative coherence of the comb lines was retained after demultiplexing. After showing that SFP lasers could be used to successfully demultiplex coherent combs a photonic integrated circuit was designed and fabricated. This involved monolithic integration of a MMI power splitter with an array of single facet SFP lasers. This device was tested much in the same way as the discrete devices. The integrated device was used to successfully demultiplex a two line coherent comb signal whilst retaining the relative coherence between the filtered comb lines. A series of modelling systems were then employed in order to understand the resonance characteristics of the fabricated devices, and to understand their performance under injection locking. Using this information, alterations to the SFP laser designs were made which were theoretically shown to provide improved performance and suitability for use in filtering coherent comb signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Future high speed communications networks will transmit data predominantly over optical fibres. As consumer and enterprise computing will remain the domain of electronics, the electro-optical conversion will get pushed further downstream towards the end user. Consequently, efficient tools are needed for this conversion and due to many potential advantages, including low cost and high output powers, long wavelength Vertical Cavity Surface Emitting Lasers (VCSELs) are a viable option. Drawbacks, such as broader linewidths than competing options, can be mitigated through the use of additional techniques such as Optical Injection Locking (OIL) which can require significant expertise and expensive equipment. This thesis addresses these issues by removing some of the experimental barriers to achieving performance increases via remote OIL. Firstly, numerical simulations of the phase and the photon and carrier numbers of an OIL semiconductor laser allowed the classification of the stable locking phase limits into three distinct groups. The frequency detuning of constant phase values (ø) was considered, in particular ø = 0 where the modulation response parameters were shown to be independent of the linewidth enhancement factor, α. A new method to estimate α and the coupling rate in a single experiment was formulated. Secondly, a novel technique to remotely determine the locked state of a VCSEL based on voltage variations of 2mV−30mV during detuned injection has been developed which can identify oscillatory and locked states. 2D & 3D maps of voltage, optical and electrical spectra illustrate corresponding behaviours. Finally, the use of directly modulated VCSELs as light sources for passive optical networks was investigated by successful transmission of data at 10 Gbit/s over 40km of single mode fibre (SMF) using cost effective electronic dispersion compensation to mitigate errors due to wavelength chirp. A widely tuneable MEMS-VCSEL was established as a good candidate for an externally modulated colourless source after a record error free transmission at 10 Gbit/s over 50km of SMF across a 30nm single mode tuning range. The ability to remotely set the emission wavelength using the novel methods developed in this thesis was demonstrated.