6 resultados para Stable strong uniqueness

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The black scabbardfish is a deep water species that supports commercial fisheries across a large area of the NE Atlantic shelf. The life history of black scabbardfish is poorly understood and a major unresolved issue is population structure. In this study it was used a combination of methodologies to get further knowledge in the life history and population structure of A. carbo over its wide distribution range in the Northeast Atlantic. The new knowledge acquired during this study, will increase our ability to better manage this species in the NE Atlantic. It has been postulated that fish caught to the west of the British Isles are pre-adults that migrate further south (to Madeira) for spawning, implying a single panmictic population. In this study, specimens of Aphanopus carbo were sampled between September 2008 and May 2010 from two different areas: NW Scotland (French trawlers and deep water surveys) and Madeira Islands (longliners commercial landings). Geographical differences in reproductive state of scabbardfish were evident, supportive of a north-south migration theory. In the northern area, all specimens found were immature, while in Madeira all maturity stages were observed. In Madeira, spawning occurred during the fourth quarter, with peak maturity in October (males) and in November (females). The age of this species has proven difficult and has led to different and contradictory age and growth estimates. For this study, we used two reading interpretations to determine age and estimate the growth parameters. To the west of the British Isles, specimens reached a lower maximum age and had a higher growth rate than those caught off Madeira. These differences are consistent with the theory of a single population of black scabbardfish in the NE Atlantic, highly segregate, with smaller, immature and younger fish caught to the west of the British Isles and bigger and mature caught in Madeira Islands. The feeding ecology showed strong evidence that the diet of black scabbardfish is associated with the spawning migration of blue whiting, which may support a northerly feeding migration theory for black scabbardfish. The stable isotope analyses in the muscle of black scabbardfish identified that black scabbardfish feeds on species with epipelagic and benthopelagic affinities. Comparison with stable isotope analysis in Madeira samples indicated that black scabbardfish feed at a similar trophic level and has the same trophic niche width in both areas, assuming similar baseline isotope compositions. Otolith stable isotopes (oxygen - δ18O and nitrogen - δ15N) analyses were used as a tool to clarify migratory behaviour. Otolith isotope ratios can provide insight into whether adults caught around Madeira fed in an isotopically depleted northerly ecosystem (NW Scotland) during their pre-adult period and then migrate towards south to spawn. Overall, the results support a south-north migration of pre adult fish from spawning areas around Madeira and a north-south migration from the west of Scotland to the spawning areas. Given its life cycle there is an urgent need that the management process recognizes the existence of a continuous widely distributed stock of black scabbardfish between the west of the British Isles and Madeira. The results highlight large scale dispersal in this species which needs to be treated as a highly migratory species and be managed as a single population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing appreciation of the polymicrobial nature of bacterial infections associated with Cystic Fibrosis (CF) and of the important role for interactions in influencing bacterial virulence and response to therapy. Patients with CF are co-infected with Pseudomonas aeruginosa, Burkholderia cenocepacia and Stenotrophomonas maltophilia. These latter bacteria produce signal molecules of the diffusible signal factor (DSF) family, which are cis-2-unsaturated fatty acids. Previous studies showed that DSF from S. maltophilia leads to altered biofilm formation and increased tolerance to antibiotics in P. aeruginosa and that these responses require the P. aeruginosa sensor kinase PA1396. The work in this thesis aims of further elucidate the influence and mechanism of DSF signalling on P. aeruginosa and examine the role that such interspecies signalling play in infection of the CF airway. Next generation sequencing technologies targeting the 16S ribosomal RNA gene were applied to DNA and RNA isolated from sputum taken from cohorts of CF and non-CF subjects to characterise the bacterial community. In parallel, metabolomics analysis of sputum provided insight into the environment of the CF airway. This analysis revealed a number of observations including; that differences in metabolites occur in sputum taken from clinically stable CF patients and those with exacerbation and DNA- and RNA-based methods suggested that a strong relationship existed between the abundance of specific strict anaerobes and fluctuations in the level of metabolites during exacerbation. DSF family signals were also detected in the sputum and a correlation with the presence of DSFproducing organisms was observed. To examine the signal transduction mechanisms used by P. aeruginosa, bioinformatics with site directed mutagenesis were employed to identify signalling partners for PA1396. A pathway suggesting a role for a number of proteins in the regulation of several factors following DSF recognition by PA1396 were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal lagoons are defined as shallow coastal water bodies partially separated from the adjacent sea by a restrictive barrier. Coastal lagoons are protected under Annex I of the European Habitats Directive (92/43/EEC). Lagoons are also considered to be “transitional water bodies” and are therefore included in the “register of protected areas” under the Water Framework Directive (2000/60/EC). Consequently, EU member states are required to establish monitoring plans and to regularly report on lagoon condition and conservation status. Irish lagoons are considered relatively rare and unusual because of their North Atlantic, macrotidal location on high energy coastlines and have received little attention. This work aimed to assess the physicochemical and ecological status of three lagoons, Cuskinny, Farranamanagh and Toormore, on the southwest coast of Ireland. Baseline salinity, nutrient and biological conditions were determined in order to provide reference conditions to detect perturbations, and to inform future maintenance of ecosystem health. Accumulation of organic matter is an increasing pressure in coastal lagoon habitats worldwide, often compounding existing eutrophication problems. This research also aimed to investigate the in situ decomposition process in a lagoon habitat together with exploring the associated invertebrate assemblages. Re-classification of the lagoons, under the guidelines of the Venice system for the classifications of marine waters according to salinity, was completed by taking spatial and temporal changes in salinity regimes into consideration. Based on the results of this study, Cuskinny, Farranamanagh and Toormore lagoons are now classified as mesohaline (5 ppt – 18 ppt), oligohaline (0.5 ppt – 5 ppt) and polyhaline (18 ppt – 30 ppt), respectively. Varying vertical, longitudinal and transverse salinity patterns were observed in the three lagoons. Strong correlations between salinity and cumulative rainfall highlighted the important role of precipitation in controlling the lagoon environment. Maximum effect of precipitation on the salinity of the lagoon was observed between four and fourteen days later depending on catchment area geology, indicating the uniqueness of each lagoon system. Seasonal nutrient patterns were evident in the lagoons. Nutrient concentrations were found to be reflective of the catchment area and the magnitude of the freshwater inflow. Assessment based on the Redfield molar ratio indicated a trend towards phosphorus, rather than nitrogen, limitation in Irish lagoons. Investigation of the decomposition process in Cuskinny Lagoon revealed that greatest biomass loss occurred in the winter season. Lowest biomass loss occurred in spring, possibly due to the high density of invertebrates feeding on the thick microbial layer rather than the decomposing litter. It has been reported that the decomposition of plant biomass is highest in the preferential distribution area of the plant species; however, no similar trend was observed in this study with the most active zones of decomposition varying spatially throughout the seasons. Macroinvertebrate analysis revealed low species diversity but high abundance, indicating the dominance of a small number of species. Invertebrate assemblages within the lagoon varied significantly from communities in the adjacent freshwater or marine environments. Although carried out in coastal lagoons on the southwest coast of Ireland, it is envisaged that the overall findings of this study have relevance throughout the entire island of Ireland and possibly to many North Atlantic coastal lagoon ecosystems elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Childhood obesity is a global epidemic posing a significant threat to the health and wellbeing of children. To reverse this epidemic, it is essential that we gain a deeper understanding of the complex array of driving factors at an individual, family and wider ecological level. Using a social-ecological framework, this thesis investigates the direction, magnitude and contribution of risk factors for childhood overweight and obesity at multiple levels of influence, with a particular focus on diet and physical activity. Methods: A systematic review was conducted to describe recent trends (from 2002-2012) in childhood overweight and obesity prevalence in Irish school children from the Republic of Ireland. Two datasets (Cork Children’s Lifestyle [CCLaS] Study and the Growing Up in Ireland [GUI] Study) were used to explore determinants of childhood overweight and obesity. Individual lifestyle factors examined were diet, physical activity and sedentary behaviour. The determinants of physical activity were also explored. Family factors examined were parental weight status and household socio-economic status. The impact of food access in the local area on diet quality and body mass index (BMI) was investigated as an environmental level risk factor. Results: Between 2002 and 2012, the prevalence of childhood overweight and obesity in Ireland remained stable. There was some evidence to suggest that childhood obesity rates may have decreased slightly though one in four Irish children remained either overweight or obese. In the CCLaS study, overweight and obese children consumed more unhealthy foods than normal weight children. A diet quality score was constructed based on a previously validated adult diet score. Each one unit increase in diet quality was significantly associated with a decreased risk of childhood overweight and obesity. Individual level factors (including gender, being a member of a sports team, weight status) were more strongly associated with physical activity levels than family or environmental factors. Overweight and obese children were more sedentary and less active than normal weight children. There was a dose response relationship between time spent at moderate to vigorous physical activity (MVPA) and the risk of childhood obesity independent of sedentary time. In contrast, total sedentary time was not associated with the risk of childhood obesity independent of MVPA though screen time was associated with childhood overweight and obesity. In the GUI Study, only one in five children had 2 normal weight parents (or one normal weight parent in the case of single parent families). Having overweight and obese parents was a significant risk factor for overweight and obesity regardless of socio-economic characteristics of the household. Family income was not associated with the odds of childhood obesity but social class and parental education were important risk factors for childhood obesity. Access to food stores in the local environment did not impact dietary quality or the BMI of Irish children. However, there was some evidence to suggest that the economic resources of the family influenced diet and BMI. Discussion: Though childhood overweight and obesity rates appear to have stabilised over the previous decade, prevalence rates are unacceptably high. As expected, overweight and obesity were associated with a high energy intake and poor dietary quality. The findings also highlight strong associations between physical inactivity and the risk of overweight and obesity, with effect sizes greater than what have been typically found in adults. Important family level determinants of childhood overweight and obesity were also identified. The findings highlight the need for a multifaceted approach, targeting a range of modifiable determinants to tackle the problem. In particular, policies and interventions at the shared family environment or community level may be an effective mean of tackling this current epidemic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last two decades, semiconductor nanocrystals have been the focus of intense research due to their size dependant optical and electrical properties. Much is now known about how to control their size, shape, composition and surface chemistry, allowing fine control of their photophysical and electronic properties. However, genuine concerns have been raised regarding the heavy metal content of these materials, which is toxic even at relatively low concentrations and may limit their wide scale use. These concerns have driven the development of heavy metal free alternatives. In recent years, germanium nanocrystals (Ge NCs) have emerged as environmentally friendlier alternatives to II-VI and IV-VI semiconductor materials as they are nontoxic, biocompatible and electrochemically stable. This thesis reports the synthesis and characterisation of Ge NCs and their application as fluorescence probes for the detection of metal ions. A room-temperature method for the synthesis of size monodisperse Ge NCs within inverse micelles is reported, with well-defined core diameters that may be tuned from 3.5 to 4.5 nm. The Ge NCs are chemically passivated with amine ligands, minimising surface oxidation while rendering the NCs dispersible in a range of polar solvents. Regulation of the Ge NCs size is achieved by variation of the ammonium salts used to form the micelles. A maximum quantum yield of 20% is shown for the nanocrystals, and a transition from primarily blue to green emission is observed as the NC diameter increases from 3.5 to 4.5 nm. A polydisperse sample with a mixed emission profile is prepared and separated by centrifugation into individual sized NCs which each showed blue and green emission only, with total suppression of other emission colours. A new, efficient one step synthesis of Ge NCs with in situ passivation and straightforward purification steps is also reported. Ge NCs are formed by co-reduction of a mixture of GeCl4 and n-butyltrichlorogermane; the latter is used both as a capping ligand and a germanium source. The surface-bound layer of butyl chains both chemically passivates and stabilises the Ge NCs. Optical spectroscopy confirmed that these NCs are in the strong quantum confinement regime, with significant involvement of surface species in exciton recombination processes. The PL QY is determined to be 37 %, one of the highest values reported for organically terminated Ge NCs. A synthetic method is developed to produce size monodisperse Ge NCs with modified surface chemistries bearing carboxylic acid, acetate, amine and epoxy functional groups. The effect of these different surface terminations on the optical properties of the NCs is also studied. Comparison of the emission properties of these Ge NCs showed that the wavelength position of the PL maxima could be moved from the UV to the blue/green by choice of the appropriate surface group. We also report the application of water-soluble Ge NCs as a fluorescent sensing platform for the fast, highly selective and sensitive detection of Fe3+ ions. The luminescence quenching mechanism is confirmed by lifetime and absorbance spectroscopies, while the applicability of this assay for detection of Fe3+ in real water samples is investigated and found to satisfy the US Environmental Protection Agency requirements for Fe3+ levels in drinkable water supplies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilute bismide alloys, containing small fractions of bismuth (Bi), have recently attracted interest due to their potential for applications in a range of semiconductor devices. Experiments have revealed that dilute bismide alloys such as GaBixAs1−x, in which a small fraction x of the atoms in the III-V semiconductor GaAs are replaced by Bi, exhibit a number of unusual and unique properties. For example, the band gap energy (E g) decreases rapidly with increasing Bi composition x, by up to 90 meV per % Bi replacing As in the alloy. This band gap reduction is accompanied by a strong increase in the spin-orbit-splitting energy (ΔSO) with increasing x, and both E g and ΔSO are characterised by strong, composition-dependent bowing. The existence of a ΔSO > E g regime in the GaBixAs1−x alloy has been demonstrated for x ≳10%, a band structure condition which is promising for the development of highly efficient, temperature stable semiconductor lasers that could lead to large energy savings in future optical communication networks. In addition to their potential for specific applications, dilute bismide alloys have also attracted interest from a fundamental perspective due to their unique properties. In this thesis we develop the theory of the electronic and optical properties of dilute bismide alloys. By adopting a multi-scale approach encompassing atomistic calculations of the electronic structure using the semi-empirical tight-binding method, as well as continuum calculations based on the k•p method, we develop a fundamental understanding of this unusual class of semiconductor alloys and identify general material properties which are promising for applications in semiconductor optoelectronic and photovoltaic devices. By performing detailed supercell calculations on both ordered and disordered alloys we explicitly demonstrate that Bi atoms act as isovalent impurities when incorporated in dilute quantities in III-V (In)GaAs(P) materials, strongly perturbing the electronic structure of the valence band. We identify and quantify the causes and consequences of the unusual electronic properties of GaBixAs1−x and related alloys, and our analysis is reinforced throughout by a series of detailed comparisons to the results of experimental measurements. Our k•p models of the band structure of GaBixAs1−x and related alloys, which we derive directly from detailed atomistic calculations, are ideally suited to the study of dilute bismide-based devices. We focus in the latter part of the thesis on calculations of the electronic and optical properties of dilute bismide quantum well lasers. In addition to developing an understanding of the effects of Bi incorporation on the operational characteristics of semiconductor lasers, we also present calculations which have been used explicitly in designing and optimising the first generation of GaBixAs1−x-based devices.