3 resultados para Spherical astronomy
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The present work is a study of the Middle English prose text known as The Wise Book of Philosophy and Astronomy, a consideration of its transmission and reception history, and a survey of its manuscript witnesses; it also incorporates an edition of the text from two of its manuscripts. The text is a cosmological treatise of approximately five thousand words, written for the most part in English, with astronomical and astrological terms in Latin, though the English translation is frequently given. It is written anonymously, and survives in thirty-three manuscripts.
Resumo:
We report the observation of urchin-like nanostructures consisting of high-density spherical nanotube radial arrays of vanadium oxide nanocomposite, successfully synthesized by a simple chemical route using an ethanolic solution of vanadium tri-isopropoxide and alkyl amine hexadecylamine for 7 days at 180oC. The results show that the growth process of the NanoUrchin occurs in stages, starting with a radial self-organized arrangement of lamina followed by the rolling of the lamina into nanotubes. The longest nanotubes are measured to be several micrometers in length with diameters of ~120 nm and hollow centers typically measured to be ~75 nm. The NanoUrchin have an estimated density of nanotubes of ~40 sr-1. The tube walls comprise layers of vanadium oxide with the organic surfactant intercalated between atomic layers. The interlayer distance is measured to be 2.9 ± 0.1 nm and electron diffraction identified the vanadate phase in the VOx nanocomposite as orthorhombic V2O5. These nanostructures may be used as three-dimensional composite materials and as supports for other materials.
Resumo:
Very Long Baseline Interferometry (VLBI) polarisation observations of the relativistic jets from Active Galactic Nuclei (AGN) allow the magnetic field environment around the jet to be probed. In particular, multi-wavelength observations of AGN jets allow the creation of Faraday rotation measure maps which can be used to gain an insight into the magnetic field component of the jet along the line of sight. Recent polarisation and Faraday rotation measure maps of many AGN show possible evidence for the presence of helical magnetic fields. The detection of such evidence is highly dependent both on the resolution of the images and the quality of the error analysis and statistics used in the detection. This thesis focuses on the development of new methods for high resolution radio astronomy imaging in both of these areas. An implementation of the Maximum Entropy Method (MEM) suitable for multi-wavelength VLBI polarisation observations is presented and the advantage in resolution it possesses over the CLEAN algorithm is discussed and demonstrated using Monte Carlo simulations. This new polarisation MEM code has been applied to multi-wavelength imaging of the Active Galactic Nuclei 0716+714, Mrk 501 and 1633+382, in each case providing improved polarisation imaging compared to the case of deconvolution using the standard CLEAN algorithm. The first MEM-based fractional polarisation and Faraday-rotation VLBI images are presented, using these sources as examples. Recent detections of gradients in Faraday rotation measure are presented, including an observation of a reversal in the direction of a gradient further along a jet. Simulated observations confirming the observability of such a phenomenon are conducted, and possible explanations for a reversal in the direction of the Faraday rotation measure gradient are discussed. These results were originally published in Mahmud et al. (2013). Finally, a new error model for the CLEAN algorithm is developed which takes into account correlation between neighbouring pixels. Comparison of error maps calculated using this new model and Monte Carlo maps show striking similarities when the sources considered are well resolved, indicating that the method is correctly reproducing at least some component of the overall uncertainty in the images. The calculation of many useful quantities using this model is demonstrated and the advantages it poses over traditional single pixel calculations is illustrated. The limitations of the model as revealed by Monte Carlo simulations are also discussed; unfortunately, the error model does not work well when applied to compact regions of emission.