4 resultados para Slow-Moving Vehicle Identification Emblems.
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The effects of vehicle speed for Structural Health Monitoring (SHM) of bridges under operational conditions are studied in this paper. The moving vehicle is modelled as a single degree oscillator traversing a damaged beam at a constant speed. The bridge is modelled as simply supported Euler-Bernoulli beam with a breathing crack. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness of the bridge deck is modelled using road classification according to ISO 8606:1995(E). The stochastic description of the unevenness of the road surface is used as an aid to monitor the health of the structure in its operational condition. Numerical simulations are conducted considering the effects of changing vehicle speed with regards to cumulant based statistical damage detection parameters. The detection and calibration of damage at different levels is based on an algorithm dependent on responses of the damaged beam due to passages of the load. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. Sensitivity of calibration values is studied. The findings of this paper are important for establishing the expectations from different vehicle speeds on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring. The identification of bunching of these speed ranges provides guidelines for using the methodology developed in the paper.
Resumo:
A wireless sensor network can become partitioned due to node failure, requiring the deployment of additional relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff between the number of additional nodes that are required and the costs of moving through the sensor field for the purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency of network restoration. In addition, minimising the number of relay nodes might lead to long routing paths to the sink, which may cause problems of data latency. This data latency is extremely important in wireless sensor network applications such as battlefield surveillance, intrusion detection, disaster rescue, highway traffic coordination, etc. where they must not violate the real-time constraints. Therefore, we also consider the problem of deploying multiple sinks in order to improve the network performance. Previous research has only parts of this problem in isolation, and has not properly considered the problems of moving through a constrained environment or discovering changes to that environment during the repair or network quality after the restoration. In this thesis, we firstly consider a base problem in which we assume the exploration tasks have already been completed, and so our aim is to optimise our use of resources in the static fully observed problem. In the real world, we would not know the radio and physical environments after damage, and this creates a dynamic problem where damage must be discovered. Therefore, we extend to the dynamic problem in which the network repair problem considers both exploration and restoration. We then add a hop-count constraint for network quality in which the desired locations can talk to a sink within a hop count limit after the network is restored. For each new problem of the network repair, we have proposed different solutions (heuristics and/or complete algorithms) which prioritise different objectives. We evaluate our solutions based on simulation, assessing the quality of solutions (node cost, movement cost, computation time, and total restoration time) by varying the problem types and the capability of the agent that makes the repair. We show that the relative importance of the objectives influences the choice of algorithm, and different speeds of movement for the repairing agent have a significant impact on performance, and must be taken into account when selecting the algorithm. In particular, the node-based approaches are the best in the node cost, and the path-based approaches are the best in the mobility cost. For the total restoration time, the node-based approaches are the best with a fast moving agent while the path-based approaches are the best with a slow moving agent. For a medium speed moving agent, the total restoration time of the node-based approaches and that of the path-based approaches are almost balanced.
Resumo:
The effect of unevenness in a bridge deck for the purpose of Structural Health Monitoring (SHM) under operational conditions is studied in this paper. The moving vehicle is modelled as a single degree of freedom system traversing the damaged beam at a constant speed. The bridge is modelled as an Euler-Bernoulli beam with a breathing crack, simply supported at both ends. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness in the bridge deck considered is modelled using road classification according to ISO 8606:1995(E). Numerical simulations are conducted considering the effects of changing road surface classes from class A - very good to class E - very poor. Cumulant based statistical parameters, based on a new algorithm are computed on stochastic responses of the damaged beam due to passages of the load in order to calibrate the damage. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. The findings of this paper are important for establishing the expectations from different types of road roughness on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring.
Resumo:
This thesis examines important issues of Irish vernacular Catholicism, Irish religious and cultural identities, the impacts of modernity plus socio-religious and economic change on traditional religiosity, sacred landscape and topophilia, religious material culture, folk and individual creativity, gender roles and expectations, and devotional subcultures through the vehicle of Marian apparitions and their aftermath in the Republic of Ireland in the late 20th and early 21st centuries. This thesis examines in detail five Irish Marian shrines as case studies; Knock shrine (Co. Mayo), Ballinspittle and Mitchelstown grottoes (Co. Cork), Mount Melleray grotto (Co. Waterford) and the Marian shrines of Inchigeela in West Cork and the attached houses of prayer. Key themes include; vernacular religious theory; the nature of Irish indigenous Catholicism; local, global and transnational trends in contemporary Irish devotional life; areas of individual creativity, fluidity and agency in Marian devotion; and the vital role and influence of material culture in and on local and individual religiosity.