7 resultados para Single crystal spectra
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP2O7, TiO2, P4O7, WP2O7 and SiO2, depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2–6 nm for all products. While all nanoparticles are new by this method, WP2O7 and SiP2O7 nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP2O7 was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO2 and P4O7. The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P4O7 affects the nanocrystalline products: nanoparticles are observed for WP2O7, with coalescing crystallization occurring for the amorphous host in which SiP2O7 crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium–ion cathode materials, catalysis and nanocrystal embedded dielectric layers.
Resumo:
The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N3P3[OC6H4CH2CN·Mo(CO)5]6 and N3P3[OC6H4CH2CN·Mo(CO)4 py]6, results in stand-alone and surface-deposited lamellar MoO3 single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO3 directly on an oxidized (400 nm SiO2) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO3 in its layered form, this provides a new route to an important intercalation material for high energy density battery materials.
Resumo:
The crystal structure containing (+/-)-3-methyl-2-phenylbutyramide with salicylic acid is the first example of a kryptoracemate co-crystal. It exhibits the first temperature mediated reversible single-crystal to single-crystal transition between two kryptoracemate forms, in addition to crystallising in another, racemic, form. Theoretical calculations and structural analysis reveal that there are only small differences in both energy and packing arrangements between the three forms. These results suggest that co-crystals can be an opportunity to investigate kryptoracemate behaviour.
Resumo:
We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn2P2O7 can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host–guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode materials
Resumo:
Nanostructured copper containing materials of CuO, Cu3(PO4)3 and Cu2P2O7 have been prepared by solid-state pyrolysis of molecular CuCl2·NC5H4OH (I), CuCl2·CNCH2C6H4OH (II), oligomeric [Cu(PPh3)Cl]4 (III), N3P3[OC6H4CH2CN·CuCl]6[PF6] (IV), N3P3[OC6H5]5[OC5H4N·Cu][PF6] (V), polymeric chitosan·(CuCl2)n (VI) and polystyrene-co-4-vinylpyridine PS-b-4-PVP·(CuCl2) (VII) precursors. The products strongly depend on the precursor used. The pyrolytic products from phosphorus-containing precursors (III), (IV) and (V) are Cu phosphates or pyrophosphates, while non-phosphorous-containing precursors (VI) and (VII), result in mainly CuO. The use of chitosan as a solid-state template/stabilizer induces the formation of CuO and Cu2O nanoparticles. Copper pyrophosphate (Cu2P2O7) deposited on Si using (IV) as the precursor exhibits single-crystal dots of average diameter 100 nm and heights equivalent to twice the unit cell b-axis (1.5–1.7 nm) and an areal density of 5.1–7.7 Gigadots/in.2. Cu2P2O7 deposited from precursor (VI) exhibits unique labyrinthine high surface area deposits. The morphology of CuO deposited on Si from pyrolysis of (VI) depends on the polymer/Cu meta ratio. Magnetic measurements performed using SQUID on CuO nanoparticle networks suggest superparamagnetic behavior. The results give insights into compositional, shape and morphological control of the as-formed nanostructures through the structure of the precursors.
Resumo:
Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.
Resumo:
The work presented in this dissertation focused on the development and characterisation of novel cocrystals that incorporated the thioamide, amide and imide functional groups. A particular emphasis was placed on the characterisation of these cocrystals by single crystal X-ray diffraction methods. In Chapter One a summary of the intermolecular interactions utilised in this work and a short review of the solid state and multicomponent systems is provided. A brief introduction to the ways in which different multicomponent systems can be distinguished, crystal engineering strategies and a number of cocrystal applications highlights the importance the understanding of intermolecular interactions can have on the physical and chemical properties of crystalline materials. Chapter Two is the first Results and Discussion chapter and includes an introduction that is specific to the chapter. The main body of this work focuses on the primary aromatic thioamide functional group and its propensity to cocrystallise with a number of sulfoxides. Unlike the amide functional group, thioamides are not commonly employed in cocrystallisation studies. This chapter presents the first direct comparison between the cocrystallisation abilities of these two functional groups and the intermolecular hydrogen bonding interactions present in the cocrystal structures are examined. Chapter Three describes the crystal landscape of a short series of secondary aromatic amides and their analogous thioamides. Building on the results obtained in Chapter Two, a cocrystal screen of the secondary thioamides with the sulfoxide functional group was carried out in order to determine the effect removing a hydrogen bond had on the supramolecular synthons observed in the cocrystals. These secondary thioamides are also utilised in Chapter Four, which examines their halogen bonding capabilities with two organoiodine coformers: 1,2- and 1,4-diiodotetrafluorobenzene. Chapter Five explores the cocrystallisation abilities of three related cyclic imides as coformers for cocrystallisation with a range of commonly used coformers. Chapter Six is an overall conclusions chapter that highlights the findings of the results presented in Chapters Two to Five. Chapter Seven details the instrument and experimental data for the compounds and cocrystals discussed in the Results and Discussion Chapters. The accompanying CD contains all of the crystallographic data in .cif format for the novel single crystal structures characterised in this work.