7 resultados para Single Track Vehicle Dynamics.
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Structural Health Monitoring (SHM) is an integral part of infrastructure maintenance and management systems due to socio-economic, safety and security reasons. The behaviour of a structure under vibration depends on structure characteristics. The change of structure characteristics may suggest the change in system behaviour due to the presence of damage(s) within. Therefore the consistent, output signal guided, and system dependable markers would be convenient tool for the online monitoring, the maintenance, rehabilitation strategies, and optimized decision making policies as required by the engineers, owners, managers, and the users from both safety and serviceability aspects. SHM has a very significant advantage over traditional investigations where tangible and intangible costs of a very high degree are often incurred due to the disruption of service. Additionally, SHM through bridge-vehicle interaction opens up opportunities for continuous tracking of the condition of the structure. Research in this area is still in initial stage and is extremely promising. This PhD focuses on using bridge-vehicle interaction response for SHM of damaged or deteriorating bridges to monitor or assess them under operating conditions. In the present study, a number of damage detection markers have been investigated and proposed in order to identify the existence, location, and the extent of an open crack in the structure. The theoretical and experimental investigation has been conducted on Single Degree of Freedom linear system, simply supported beams. The novel Delay Vector Variance (DVV) methodology has been employed for characterization of structural behaviour by time-domain response analysis. Also, the analysis of responses of actual bridges using DVV method has been for the first time employed for this kind of investigation.
Resumo:
This thesis is concerned with inductive charging of electric vehicle batteries. Rectified power form the 50/60 Hz utility feeds a dc-ac converter which delivers high-frequency ac power to the electric vehicle inductive coupling inlet. The inlet configuration has been defined by the Society of Automotive Engineers in Recommended Practice J-1773. This thesis studies converter topologies related to the series resonant converter. When coupled to the vehicle inlet, the frequency-controlled series-resonant converter results in a capacitively-filtered series-parallel LCLC (SP-LCLC) resonant converter topology with zero voltage switching and many other desirable features. A novel time-domain transformation analysis, termed Modal Analysis, is developed, using a state variable transformation, to analyze and characterize this multi-resonant fourth-orderconverter. Next, Fundamental Mode Approximation (FMA) Analysis, based on a voltage-source model of the load, and its novel extension, Rectifier-Compensated FMA (RCFMA) Analysis, are developed and applied to the SP-LCLC converter. The RCFMA Analysis is a simpler and more intuitive analysis than the Modal Analysis, and provides a relatively accurate closed-form solution for the converter behavior. Phase control of the SP-LCLC converter is investigated as a control option. FMA and RCFMA Analyses are used for detailed characterization. The analyses identify areas of operation, which are also validated experimentally, where it is advantageous to phase control the converter. A novel hybrid control scheme is proposed which integrates frequency and phase control and achieves reduced operating frequency range and improved partial-load efficiency. The phase-controlled SP-LCLC converter can also be configured with a parallel load and is an excellent option for the application. The resulting topology implements soft-switching over the entire load range and has high full-load and partial-load efficiencies. RCFMA Analysis is used to analyze and characterize the new converter topology, and good correlation is shown with experimental results. Finally, a novel single-stage power-factor-corrected ac-dc converter is introduced, which uses the current-source characteristic of the SP-LCLC topology to provide power factor correction over a wide output power range from zero to full load. This converter exhibits all the advantageous characteristics of its dc-dc counterpart, with a reduced parts count and cost. Simulation and experimental results verify the operation of the new converter.
Resumo:
The dynamics of two mutually coupled identical single-mode semi-conductor lasers are theoretically investigated. For small separation and large coupling between the lasers, symmetry-broken one-colour states are shown to be stable. In this case the light output of the lasers have significantly different intensities whilst at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable two-colour states, where both single-mode lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. For low coupling but possibly large separation, the frequency of the relaxation oscillations of the freerunning lasers defines the dynamics. Chaotic and quasi-periodic states are identified and shown to be stable. For weak coupling undamped relaxation oscillations dominate where each laser is locked to three or more odd number of colours spaced by the relaxation oscillation frequency. It is shown that the instabilities that lead to these states are directly connected to the two colour mechanism where the change in the number of optical colours due to a change in the plane of oscillation. At initial coupling, in-phase and anti-phase one colour states are shown to emerge from “on” uncoupled lasers using a perturbation method. Similarly symmetry-broken one-colour states come from considering one free-running laser initially “on” and the other laser initially “off”. The mechanism that leads to a bi-stability between in-phase and anti-phase one-colour states is understood. Due to an equivariant phase space symmetry of being able to exchange the identical lasers, a symmetric and symmetry-broken variant of all states mentioned above exists and is shown to be stable. Using a five dimensional model we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-colour, symmetric and symmetry-broken two-colour, symmetric and symmetry-broken undamped relaxation oscillations, symmetric and symmetry-broken quasi-periodic, and symmetric and symmetry-broken chaotic states. As symmetry-broken states always exist in pairs, they naturally give rise to bi-stability. Several of these states show multistabilities between symmetric and symmetry-broken variants and among states. Three memory elements on the basis of bi-stabilities in one and two colour states for two coupled single-mode lasers are proposed. The switching performance of selected designs of optical memory elements is studied numerically.
Resumo:
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
Resumo:
The effects of vehicle speed for Structural Health Monitoring (SHM) of bridges under operational conditions are studied in this paper. The moving vehicle is modelled as a single degree oscillator traversing a damaged beam at a constant speed. The bridge is modelled as simply supported Euler-Bernoulli beam with a breathing crack. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness of the bridge deck is modelled using road classification according to ISO 8606:1995(E). The stochastic description of the unevenness of the road surface is used as an aid to monitor the health of the structure in its operational condition. Numerical simulations are conducted considering the effects of changing vehicle speed with regards to cumulant based statistical damage detection parameters. The detection and calibration of damage at different levels is based on an algorithm dependent on responses of the damaged beam due to passages of the load. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. Sensitivity of calibration values is studied. The findings of this paper are important for establishing the expectations from different vehicle speeds on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring. The identification of bunching of these speed ranges provides guidelines for using the methodology developed in the paper.
Resumo:
In this paper, we present a novel 1x2 multi-mode-interferometer-Fabry-Perot (MMI-FP) laser diode, which demonstrated tunable single frequency operation with more than 30dB side mode suppression ratio (SMSR) and a tuning range of 25nm in the C and L bands, as well as a 750 kHz linewidth. These lasers do not require material regrowth and high resolution gratings; resulting in a simpler process that can significantly increase the yield and reduce the cost.
Resumo:
Semiconductor lasers have the potential to address a number of critical applications in advanced telecommunications and signal processing. These include applications that require pulsed output that can be obtained from self-pulsing and mode-locked states of two-section devices with saturable absorption. Many modern applications place stringent performance requirements on the laser source, and a thorough understanding of the physical mechanisms underlying these pulsed modes of operation is therefore highly desirable. In this thesis, we present experimental measurements and numerical simulations of a variety of self-pulsation phenomena in two-section semiconductor lasers with saturable absorption. Our theoretical and numerical results will be based on rate equations for the field intensities and the carrier densities in the two sections of the device, and we establish typical parameter ranges and assess the level of agreement with experiment that can be expected from our models. For each of the physical examples that we consider, our model parameters are consistent with the physical net gain and absorption of the studied devices. Following our introductory chapter, the first system that we consider is a two-section Fabry-Pérot laser. This example serves to introduce our method for obtaining model parameters from the measured material dispersion, and it also allows us to present a detailed discussion of the bifurcation structure that governs the appearance of selfpulsations in two-section devices. In the following two chapters, we present two distinct examples of experimental measurements from dual-mode two-section devices. In each case we have found that single mode self-pulsations evolve into complex coupled dualmode states following a characteristic series of bifurcations. We present optical and mode resolved power spectra as well as a series of characteristic intensity time traces illustrating this progression for each example. Using the results from our study of a twosection Fabry-Pérot device as a guide, we find physically appropriate model parameters that provide qualitative agreement with our experimental results. We highlight the role played by material dispersion and the underlying single mode self-pulsing orbits in determining the observed dynamics, and we use numerical continuation methods to provide a global picture of the governing bifurcation structure. In our concluding chapter we summarise our work, and we discuss how the presented results can inform the development of optimised mode-locked lasers for performance applications in integrated optics.