6 resultados para Si1-xCx alloys

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A first-principles method is applied to find the intra and intervalley n-type carrier scattering rates for substitutional carbon in silicon. The method builds on a previously developed first-principles approach with the introduction of an interpolation technique to determine the intravalley scattering rates. Intravalley scattering is found to be the dominant alloy scattering process in Si1-xCx, followed by g-type intervalley scattering. Mobility calculations show that alloy scattering due to substitutional C alone cannot account for the experimentally observed degradation of the mobility. We show that the incorporation of additional charged impurity scattering due to electrically active interstitial C complexes models this residual resistivity well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to find the rates of inelastic intravalley and intervalley n-type carrier scattering in Si1-xGex alloys. Scattering parameters for all relevant Delta and L intra- and intervalley scattering are calculated. The short-wavelength acoustic and the optical phonon modes in the alloy are computed using the random mass approximation, with interatomic forces calculated in the virtual crystal approximation using density functional perturbation theory. Optical phonon and intervalley scattering matrix elements are calculated from these modes of the disordered alloy. It is found that alloy disorder has only a small effect on the overall inelastic intervalley scattering rate at room temperature. Intravalley acoustic scattering rates are calculated within the deformation potential approximation. The acoustic deformation potentials are found directly and the range of validity of the deformation potential approximation verified in long-wavelength frozen phonon calculations. Details of the calculation of elastic alloy scattering rates presented in an earlier paper are also given. Elastic alloy disorder scattering is found to dominate over inelastic scattering, except for almost pure silicon (x approximate to 0) or almost pure germanium (x approximate to 1), where acoustic phonon scattering is predominant. The n-type carrier mobility, calculated from the total (elastic plus inelastic) scattering rate, using the Boltzmann transport equation in the relaxation time approximation, is in excellent agreement with experiments on bulk, unstrained alloys..

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The p-type carrier scattering rate due to alloy disorder in Si1-xGex alloys is obtained from first principles. The required alloy scattering matrix elements are calculated from the energy splitting of the valence bands, which arise when one average host atom is replaced by a Ge or Si atom in supercells containing up to 128 atoms. Alloy scattering within the valence bands is found to be characterized by a single scattering parameter. The hole mobility is calculated from the scattering rate using the Boltzmann transport equation in the relaxation time approximation. The results are in good agreement with experiments on bulk, unstrained alloys..

Relevância:

80.00% 80.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to find the rates of intravalley and intervalley n-type carrier scattering due to alloy disorder in Si1-xGex alloys. The required alloy scattering matrix elements are calculated from the energy splitting of nearly degenerate Bloch states which arises when one average host atom is replaced by a Ge or Si atom in supercells containing up to 128 atoms. Scattering parameters for all relevant Delta and L intravalley and intervalley alloy scattering are calculated. Atomic relaxation is found to have a substantial effect on the scattering parameters. f-type intervalley scattering between Delta valleys is found to be comparable to other scattering channels. The n-type carrier mobility, calculated from the scattering rate using the Boltzmann transport equation in the relaxation time approximation, is in excellent agreement with experiments on bulk, unstrained alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilute bismide alloys, containing small fractions of bismuth (Bi), have recently attracted interest due to their potential for applications in a range of semiconductor devices. Experiments have revealed that dilute bismide alloys such as GaBixAs1−x, in which a small fraction x of the atoms in the III-V semiconductor GaAs are replaced by Bi, exhibit a number of unusual and unique properties. For example, the band gap energy (E g) decreases rapidly with increasing Bi composition x, by up to 90 meV per % Bi replacing As in the alloy. This band gap reduction is accompanied by a strong increase in the spin-orbit-splitting energy (ΔSO) with increasing x, and both E g and ΔSO are characterised by strong, composition-dependent bowing. The existence of a ΔSO > E g regime in the GaBixAs1−x alloy has been demonstrated for x ≳10%, a band structure condition which is promising for the development of highly efficient, temperature stable semiconductor lasers that could lead to large energy savings in future optical communication networks. In addition to their potential for specific applications, dilute bismide alloys have also attracted interest from a fundamental perspective due to their unique properties. In this thesis we develop the theory of the electronic and optical properties of dilute bismide alloys. By adopting a multi-scale approach encompassing atomistic calculations of the electronic structure using the semi-empirical tight-binding method, as well as continuum calculations based on the k•p method, we develop a fundamental understanding of this unusual class of semiconductor alloys and identify general material properties which are promising for applications in semiconductor optoelectronic and photovoltaic devices. By performing detailed supercell calculations on both ordered and disordered alloys we explicitly demonstrate that Bi atoms act as isovalent impurities when incorporated in dilute quantities in III-V (In)GaAs(P) materials, strongly perturbing the electronic structure of the valence band. We identify and quantify the causes and consequences of the unusual electronic properties of GaBixAs1−x and related alloys, and our analysis is reinforced throughout by a series of detailed comparisons to the results of experimental measurements. Our k•p models of the band structure of GaBixAs1−x and related alloys, which we derive directly from detailed atomistic calculations, are ideally suited to the study of dilute bismide-based devices. We focus in the latter part of the thesis on calculations of the electronic and optical properties of dilute bismide quantum well lasers. In addition to developing an understanding of the effects of Bi incorporation on the operational characteristics of semiconductor lasers, we also present calculations which have been used explicitly in designing and optimising the first generation of GaBixAs1−x-based devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes feasible and improved ways towards enhanced nanowire growth kinetics by reducing the equilibrium solute concentration in the liquid collector phase in a vapor-liquid-solid (VLS) like growth model. Use of bi-metallic alloy seeds (AuxAg1-x) influences the germanium supersaturation for a faster nucleation and growth kinetics. Nanowire growth with ternary eutectic alloys shows Gibbs-Thompson effect with diameter dependent growth rate. In-situ transmission electron microscopy (TEM) annealing experiments directly confirms the role of equilibrium concentration in nanowire growth kinetics and was used to correlate the equilibrium content of metastable alloys with the growth kinetics of Ge nanowires. The shape and geometry of the heterogeneous interfaces between the liquid eutectic and solid Ge nanowires were found to vary as a function of nanowire diameter and eutectic alloy composition.