2 resultados para Shrubs.
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Plant galls constitute a branch of study and research which has been to me a subject of much interest for some time. At the start of this work, it was intended to include Plant galls in general, but after some months this was found to be too comprehensive a field and would in fact take a great many years to study fully. Even leaf galls alone, both of herbs and trees provide so large a field of investigation that ultimately I decided to confine my attention to those or our native trees and shrubs. Upon looking up the literature on this subject, it will be found that in nearly all cases, either the gall is described fully and mere mention made or the agent concerned in its production, or vice versa. This state of things is most unsatisfactory, as in studying galls, both the gall-maker and the gall formation must be examined in detail before it is safe to apply nomenclature. This work, therefore, sets out to give accurate and scientific descriptions of both galls and gall-makers. The difficulties encountered are manifold; firstly, our trees are all deciduous, hence, the collecting period is necessarily restricted to that time of the year between the appearance of the buds and the fall of the leaf. Secondly, the rearing of imagines is always difficult, especially in the case or the autumn gall; more will be said on this matter later. Lastly, due to war-time conditions much trouble was experienced in obtaining suitable literature and many invaluable books on this subject were unprocurable. The Plates at the back have all been copied from original material except in the case or the Phytoptid mites which have been sketched with the help of illustrations, the reason for this being the difficulty of making suitable mounts of these minute creatures, Where possible all stages or at least larva and imago have been sketched, together with the host plant and the type of gall-formation produced. Slides have also been made of most larvae and the imagines attached to cards and pinned on to pith or cork in the usual manner.
Resumo:
Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation simulations suggest that a wetter tundra can be responsible for local shrub decline instead of shrub expansion.