10 resultados para Shikonin derivatives
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis describes work carried out on the design of new routes to a range of bisindolylmaleimide and indolo[2,3-a]carbazole analogs, and investigation of their potential as successful anti-cancer agents. Following initial investigation of classical routes to indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycons, a new strategy employing base-mediated condensation of thiourea and guanidine with a bisindolyl β-ketoester intermediate afforded novel 5,6-bisindolylpyrimidin-4(3H)-ones in moderate yields. Chemical diversity within this H-bonding scaffold was then studied by substitution with a panel of biologically relevant electrophiles, and by reductive desulfurisation. Optimisation of difficult heterogeneous literature conditions for oxidative desulfurisation of thiouracils was also accomplished, enabling a mild route to a novel 5,6-bisindolyluracil pharmacophore to be developed within this work. The oxidative cyclisation of selected acyclic bisindolyl systems to form a new planar class of indolo[2,3-a]pyrimido[5,4-c]carbazoles was also investigated. Successful conditions for this transformation, as well as the limitations currently prevailing for this approach are discussed. Synthesis of 3,4-bisindolyl-5-aminopyrazole as a potential isostere of bisindolylmaleimide agents was encountered, along with a comprehensive derivatisation study, in order to probe the chemical space for potential protein backbone H-bonding interactions. Synthesis of a related 3,4-arylindolyl-5-aminopyrazole series was also undertaken, based on identification of potent kinase inhibition within a closely related heterocyclic template. Following synthesis of approximately 50 novel compounds with a diversity of H-bonding enzyme-interacting potential within these classes, biological studies confirmed that significant topo II inhibition was present for 9 lead compounds, in previously unseen pyrazolo[1,5-a]pyrimidine, indolo[2,3-c]carbazole and branched S,N-disubstituted thiouracil derivative series. NCI-60 cancer cell line growth inhibition data for 6 representative compounds also revealed interesting selectivity differences between each compound class, while a new pyrimido[5,4-c]carbazole agent strongly inhibited cancer cell division at 10 µM, with appreciable cytotoxic activity observed across several tumour types.
Resumo:
This thesis describes work carried out on the synthesis of novel 5- and 11-substituted ellipticines and derivatives of the ellipticine analogues, isoellipticine and deazaellipticine, followed by investigation of their potential as anti-cancer agents. Preparation of the key 5- and 11-substituted ellipticine targets involved the development of regiospecific, sequential alkylation reactions with alkenyllithium and Grignard reagents. Investigation of these novel reactions resulted in a new route towards 5-substituted ellipticines via Grignard reaction with vinylmagnesium bromide. These novel 5-vinylellipticine derivatives were further functionalised in an ozonolysis reaction, followed by oxidation to give a range of novel 5-substituted ellipticines. Less success was encountered in the 11-substituted ellipticine series, however preparation of these derivatives using a previously published route was accomplished, and the resulting 11-formylellipticine was further derivatised to give a panel of novel 9- and 11-substituted ellipticines, incorporating amide, carboxylate, imine and amine functionality. The successful route towards 5-substituted ellipticines was applied to the preparation of a range of novel 11-substituted isoellipticines and 6-substituted deazaellipticines, the first time substantial synthesis has been undertaken with these analogues. In addition to this, the first preparation of isoellipticinium salts is described, and a panel of novel isoellipticinium, 7 formylisoellipticinium and 7-hydroxyisoellipticinium salts were synthesised in good yields. Biological evaluation of a panel of 43 novel ellipticine, isoellipticine and deazaellipticine derivatives was accomplished with a topoisomerase II decatenation assay and submission to the NCI 60-cell line screen. Four novel isoellipticine topoisomerase II inhibitors were identified from the decatenation assay, with strong activity at 10 μM. In addition to this, NCI screening identified five highly cytotoxic ellipticine and isoellipticine compounds with remarkable selectivity profiles for different cancer types. These novel lead compounds represent new templates for further research and synthesis.
Resumo:
The research described in this thesis involves the synthesis of α-diazo-β-oxo sulfoxides, and exploration of their reactivity. The first chapter includes an introduction to diazocarbonyl chemistry, specifically focusing on the synthesis of diazo compounds, and diazosulfoxide derivatives. The chemistry of sulfines, in particular the generation of α-oxo sulfines and their subsequent trapping as cycloadducts and dimerisation is discussed. The results of this research are discussed in the second and third chapters. The design, synthesis and reactivity of α-diazo-β-oxo sulfoxides is described in chapter 2 where diazo transfer adjacent to sulfoxides to form stable α-diazo-β-oxo sulfoxides has been achieved in cyclic systems. Decomposition of theses α-diazosulfoxides using rhodium carboxylate or carboxamide catalysts is also described. These processes proceed via a Wolff type rearrangement to form α-oxo sulfine intermediates, which were trapped as cycloadducts with dienes. In the absence of a diene trap, dimerisation of the sulfine intermediate was observed. Intramolecular C-H insertion reasctios of α-diazo-α-sulfonyl esters to form substituted sulfolane esters is described in chapter 3. The reactivity of these sulfolane esters is briefly explored. The fourth chapter contains the experimental details and the spectral and analytical data for all new compounds reported.
Resumo:
The research described in this thesis involved the synthesis and characterisation of rhodium, platinum and palladium derivatives of arsena-, carba- and telluraboranes.
Resumo:
This thesis details the design and implementation of novel chemical routes towards a series of highly propitious 7-azaindolyl derivatives of the indolocarbazole (ICZ) and bisindolylmaleimide (BIM) families, with subsequent evaluation for use as cancer chemotherapeutic agents. A robust synthetic strategy was devised to allow the introduction of a 7-azaindolyl moiety into our molecular template. This approach allowed access to a wide range of β-keto ester and β-keto nitrile intermediates. Critical analysis identified F-ring modulation as a major theme towards the advancement of ICZ and BIM derivatives in drug therapy. Thus, the employment of cyclocondensation methodology furnished a number of novel aminopyrazole, isoxazolone, pyrazolone and pyrimidinone analogues, considerably widening the scope of the prevalent maleimide functionality. Photochemical cyclisation provided for the first reported aza ICZ containing a six-membered F-ring. Another method towards achieving the aza ICZ core involved use of a Perkin-type condensation approach, with chemical elaboration of the headgroup instigated post-aromatisation. Subsequent use of a modified Lossen rearrangement allowed access to further analogues containing a six-membered F-ring. Extensive screening of the novel aza ICZ and BIM derivatives was carried out against the NCI-60 cancer cell array, with nine prospective candidates selected for continued biological evaluation. From these assays, a number of compounds were shown to inhibit cancer cell growth at concentrations of below 10 nM. Indeed, the most active aza ICZ tested is currently under assessment by the Biological Evaluation Committee of the NCI due to excellent antiproliferative activity demonstrated across the panel of cell lines, with a mean GI50 of 34 nM, a mean total growth inhibition (TGI) of 4.6 μM and a mean cytotoxicity (LC50) of 63.1 μM. Correlation to known topoisomerase I (topo I) inhibitors was revealed by COMPARE analysis, and subsequent topo I-mediated DNA cleavage assays showed inhibitory activity below 1 μM for several derivatives.
Resumo:
This thesis is focused on the synthesis and solid state analysis of carbohydrate derivatives, including many novel compounds. Although the synthetic chemistry surrounding carbohydrates is well established in the literature, the crystal chemistry of carbohydrates is less well studied. Therefore this research aims to improve understanding of the solid state properties of carbohydrate derivatives through gaining more information on their supramolecular bonding. Chapter One focuses on an introduction to the solid state of organic compounds, with a background to crystallisation, including issues that can arise during crystal growth. Chapter Two is based on glucopyranuronate derivatives which are understudied in terms of their solid state forms. This chapter reports on the formation of novel glucuronamides and utilising the functionality of the amide bond for crystallisation. TEMPO oxidation was completed to form glucopyranuronates by oxidation of the primary alcohol groups of glucosides to the carboxylic acid derivatives, to increase functionality for enhanced crystal growth. Chapter Three reports on the synthesis of glucopyranoside derivatives by O-glycosylation reactions and displays crystal structures, including a number of previously unsolved acetate protected and deprotected crystal structures. More complex glycoside derivatives were also researched in an aim to study the resultant supramolecular motifs. Chapter Four contains the synthesis of aryl cellobioside derivatives including the novel crystal structures that were solved for the acetate protected and deprotected compounds. Research was carried out to determine if 1-deoxycellodextrins could act as putative isostructures for cellulose. Our research displays the presence of isostructural references with 1-deoxycellotriose shown to be similar to cellulose III11, 1-deoxycellotetraose correlates with cellulose IV11 and 1-deoxycellopentose shows isostructurality similar to that of cellulose II. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project and relevant crystallographic information.
Resumo:
The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N3P3[OC6H4CH2CN·Mo(CO)5]6 and N3P3[OC6H4CH2CN·Mo(CO)4 py]6, results in stand-alone and surface-deposited lamellar MoO3 single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO3 directly on an oxidized (400 nm SiO2) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO3 in its layered form, this provides a new route to an important intercalation material for high energy density battery materials.
Resumo:
The cyclic phosphazene trimers [N3P3(OC6H5)5OC5H4N·Ti(Cp)2Cl][PF6] (3), [N3P3(OC6H4CH2CN·Ti(Cp)2Cl)6][PF6]6 (4), [N3P3(OC6H4-But)5(OC6H4CH2CN·Ti(Cp)2Cl)][PF6] (5), [N3P3(OC6H5)5C6H4CH2CN·Ru(Cp)(PPh3)2][PF6] (6), [N3P3(OC6H5)5C6H4CH2CN·Fe(Cp)(dppe)][PF6] (7) and N3P3(OC6H5)5OC5H4N·W(CO)5 (8) were prepared and characterized. As a model, the simple compounds [HOC5H5N·Ti(Cp)2Cl]PF6 (1) and [HOC6H4CH2CN·Ti(Cp)2Cl]PF6 (2) were also prepared and characterized. Pyrolysis of the organometallic cyclic trimers in air yields metallic nanostructured materials, which according to transmission and scanning electron microscopy (TEM/SEM), energy-dispersive X-ray microanalysis (EDX), and IR data, can be formulated as either a metal oxide, metal pyrophosphate or a mixture in some cases, depending on the nature and quantity of the metal, characteristics of the organic spacer and the auxiliary substituent attached to the phosphorus cycle. Atomic force microscopy (AFM) data indicate the formation of small island and striate nanostructures. A plausible formation mechanism which involves the formation of a cyclomatrix is proposed, and the pyrolysis of the organometallic cyclic phosphazene polymer as a new and general method for obtaining metallic nanostructured materials is discussed.
Resumo:
This thesis outlines the synthetic chemistry involved in the preparation of a range of novel indazole compounds and details the subsequent investigation into their potential as biologically active agents. The synthetic route utilised in this research to form the indazole structure was the [3+2] dipolar cycloaddition of diazo carbonyl compounds with reactive aryne intermediates generated in situ. The preparation of further novel indazole derivatives containing different functional groups and substituents was performed by synthesising alternative 1,3- dipole and dipolarophile analogues and provided additionally diverse compounds. Further derivatisation of the indazole product was made possible by deacylation and alkylation methods. Transformation reactions were performed on alkenecontaining ester side chains to provide novel epoxide, aldehyde and tertiary amine derivatives. The first chapter is a review of the literature beginning with a short overview on the structure, reactivity and common synthetic routes to diazo carbonyl derivatives. More attention is given to the use of diazo compounds as 1,3-dipoles in cycloaddition reactions or where the diazo group is incorporated into the final product. A review of the interesting background, structure and reactivity of aryne intermediates is also presented. In addition, some common syntheses of indazole compounds are presented as well as a brief discussion on the importance of indazole compounds as therapeutic agents. The second chapter discusses the synthetic routes employed towards the synthesis of the range of indazoles. Initially, the syntheses of the diazo carbonyl and aryne precursors are described. Next, the synthetic methods to prepare the indazole compounds are provided followed by discussion on derivatisation of the indazole compounds including N-deacylation, N-benzylation and ester side-chain transformation of some alkene-containing indazoles. A series of novel indazole derivatives were submitted for anti-cancer screening at the U.S National Cancer Institute (NCI). A number of these derivatives were identified as hit compounds, with excellent growth inhibition. The results obtained from biological evaluation from the NCI are provided with further results pending from the Community for Open Antimicrobial Drug Discovery. The third chapter details the full experimental procedures, including spectroscopic and analytical data for all the compounds prepared during this research.
Resumo:
This thesis outlines a more environmentally benign approach to diazo transfer, and the investigation of the reactivity of -diazocarbonyl compounds when subjected to transition metal and lanthanide catalysis. Extensive studies were carried out to find the optimum conditions for a greener diazo transfer methodology, and this was also applied to a continuous process for the synthesis of -diazo--ketoesters. The first chapter includes a literature review of the synthesis and subsequent reactivity of -diazocarbonyl compounds. An overview of the applications of flow chemistry for the synthesis of hazardous intermediates is also included. The applications of lanthanide catalysts in organic synthesis is also discussed. The second chapter outlines the extensive studies undertaken to determine the optimum conditions for a greener diazo transfer methodology, including base and solvent studies. Use of water as a viable solvent for diazo transfer was successfully investigated. Diazo transfer to a range of -diazo--ketoesters was achieved using 5 mol% triethylamine or DMAP in water with high conversions. Polystyrene-supported benzenesulfonyl azide as an alternative diazo transfer reagent was also explored, as well as investigations into cheaper generation of this safer reagent. This polymer-supported benzenesulfonyl azide was used with 25 mol% of base in water to achieve successful diazo transfer to a range of -diazo--ketoesters. The third chapter describes the application of the new methodology developed in Chapter 2 to a continuous processing approach. Various excellent conditions were identified for both batch and flow reactions. A series of -diazo--ketoesters were synthesised with excellent conversions using 25 mol% triethylamine in 90:10 acetone water using flow chemistry. Successful diazo transfer was also achieved using a polymer-supported benzenesulfonyl azide in water under flow conditions. The fourth chapter discusses the reactivity of -diazo--ketoesters under transition metal and lanthanide catalysis. This chapter describes the synthesis of a range of -ketoesters via transesterification, which were used to synthesise a range of novel -diazo--ketoesters that were used in subsequent decomposition reactions. A novel route to dioxinones via rhodium(II) catalysis is reported. Attempted OH and SH insertion reactions in the presence of various lanthanide(II) catalysts are outlined, leading to some unexpected and interesting rearrangement products. The experimental details, including spectroscopic and analytical data for all compounds prepared, are reported at the end of each chapter.