2 resultados para Sentinel organisms

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic pollutant chemicals pose a major threat to aquatic organisms. There is a need for more research on emerging categories of environmental chemicals such as nanomaterials, endocrine disruptors and pharmaceuticals. Proteomics offers options and advantages for early warning of alterations in environmental quality by detecting sub-lethal changes in sentinel species such as the mussel, Mytilus edulis. This thesis aimed to compare the potential of traditional biomarkers (such as enzyme activity measurement) and newer redox proteomic approaches. Environmental proteomics, especially a redox proteomics toolbox, may be a novel way to study pollutant effects on organisms which can also yield information on risks to human health. In particular, it can probe subtle biochemical changes at sub-lethal concentrations and thus offer novel insights to toxicity mechanisms. In the first instance, the present research involved a field-study in three stations in Cork Harbour, Ireland (Haulbowline, Ringaskiddy and Douglas) compared to an outharbour control site in Bantry Bay, Ireland. Then, further research was carried out to detect effects of anthropogenic pollution on selected chemicals. Diclofenac is an example of veterinary and human pharmaceuticals, an emerging category of chemical pollutants, with potential to cause serious toxicity to non-target organisms. A second chemical used for this study was copper which is a key source of contamination in marine ecosystems. Thirdly, bisphenol A is a major anthropogenic chemical mainly used in polycarbonate plastics manufacturing that is widespread in the environment. It is also suspected to be an endocrine disruptor. Effects on the gill, the principal feeding organ of mussels, were investigated in particular. Effects on digestive gland were also investigated to compare different outcomes from each tissue. Across the three anthropogenic chemicals studied (diclofenac, copper and bisphenol A), only diclofenac exposure did not show any significant difference towards glutathione transferase (GST) responses. Meanwhile, copper and bisphenol A significantly increased GST in gill. Glutathione reductase (GR) enzyme analysis revealed that all three chemicals have significant responses in gill. Catalase activity showed significant differences in digestive gland exposed to diclofenac and gills exposed to bisphenol A. This study focused then on application of redox proteomics; the study of the oxidative modification of proteins, to M. edulis. Thiol proteins were labelled with 5-iodoacetamidofluorescein prior to one-dimensional and two-dimensional electrophoresis. This clearly revealed some similarities on a portion of the redox proteome across chemical exposures indicating where toxicity mechanism may be common and where effects are unique to a single treatment. This thesis documents that proteomics is a robust tool to provide valuable insights into possible mechanisms of toxicity of anthropogenic contaminants in M. edulis. It is concluded that future research should focus on gill tissue, on protein thiols and on key individual proteins discovered in this study such as calreticulin and arginine kinase which have not previously been considered as biomarkers in aquatic toxicology prior to this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potato cyst nematodes (PCN) cause significant damage to the potato crop worldwide and growers experience economic losses related to yield loss and the cost of control measures. Experiments were set up to further elucidate the complex tritrophic PCNpotato-soil bacteria relationship. Bacterial strains isolated from the sugar beet rhizosphere were shown to be hatch active towards Globodera pallida and to be capable of successfully colonising the sugar beet rhizosphere when applied exogenously. A trap-crop system, based on these isolates, was proposed. Ridge and bulk soil taken from a commercial potato field were incubated with sterile potato root leachate (sPRL) and subsequent in vitro hatching assays showed that PCN hatch was influenced by microorganisms present in the ridge, but not in the bulk soil. Community level physiological profiling (CLPP) of ridge and bulk soil, using BIOLOG EcoplatesTM, demonstrated differences in bacterial functional diversity between the two soil types. An investigation of the inter-species competition between G. pallida and G. rostochiensis showed that G. pallida performed significantly better, in terms of multiplication rate, in competition with G. rostochiensis compared to its multiplication rate in single-species populations. Effectively removing the early hatch of G. rostochiensis in pot trials led to the removal of this competitive advantage of G. pallida suggesting that this advantage was due, at least in part, to morphological changes to the root caused by the early hatching of G. rostochiensis.