4 resultados para Semi-Gas Kinetics (Sgk) Model
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis deals with the evaporation of non-ideal liquid mixtures using a multicomponent mass transfer approach. It develops the concept of evaporation maps as a convenient way of representing the dynamic composition changes of ternary mixtures during an evaporation process. Evaporation maps represent the residual composition of evaporating ternary non-ideal mixtures over the full range of composition, and are analogous to the commonly-used residue curve maps of simple distillation processes. The evaporation process initially considered in this work involves gas-phase limited evaporation from a liquid or wetted-solid surface, over which a gas flows at known conditions. Evaporation may occur into a pure inert gas, or into one pre-loaded with a known fraction of one of the ternary components. To explore multicomponent masstransfer effects, a model is developed that uses an exact solution to the Maxwell-Stefan equations for mass transfer in the gas film, with a lumped approach applied to the liquid phase. Solutions to the evaporation model take the form of trajectories in temperaturecomposition space, which are then projected onto a ternary diagram to form the map. Novel algorithms are developed for computation of pseudo-azeotropes in the evaporating mixture, and for calculation of the multicomponent wet-bulb temperature at a given liquid composition. A numerical continuation method is used to track the bifurcations which occur in the evaporation maps, where the composition of one component of the pre-loaded gas is the bifurcation parameter. The bifurcation diagrams can in principle be used to determine the required gas composition to produce a specific terminal composition in the liquid. A simple homotopy method is developed to track the locations of the various possible pseudo-azeotropes in the mixture. The stability of pseudo-azeotropes in the gas-phase limited case is examined using a linearized analysis of the governing equations. Algorithms for the calculation of separation boundaries in the evaporation maps are developed using an optimization-based method, as well as a method employing eigenvectors derived from the linearized analysis. The flexure of the wet-bulb temperature surface is explored, and it is shown how evaporation trajectories cross ridges and valleys, so that ridges and valleys of the surface do not coincide with separation boundaries. Finally, the assumption of gas-phase limited mass transfer is relaxed, by employing a model that includes diffusion in the liquid phase. A finite-volume method is used to solve the system of partial differential equations that results. The evaporation trajectories for the distributed model reduce to those of the lumped (gas-phase limited) model as the diffusivity in the liquid increases; under the same gas-phase conditions the permissible terminal compositions of the distributed and lumped models are the same.
Resumo:
Countries across the world are being challenged to decarbonise their energy systems in response to diminishing fossil fuel reserves, rising GHG emissions and the dangerous threat of climate change. There has been a renewed interest in energy efficiency, renewable energy and low carbon energy as policy‐makers seek to identify and put in place the most robust sustainable energy system that can address this challenge. This thesis seeks to improve the evidence base underpinning energy policy decisions in Ireland with a particular focus on natural gas, which in 2011 grew to have a 30% share of Ireland’s TPER. Natural gas is used in all sectors of the Irish economy and is seen by many as a transition fuel to a low-carbon energy system; it is also a uniquely excellent source of data for many aspects of energy consumption. A detailed decomposition analysis of natural gas consumption in the residential sector quantifies many of the structural drives of change, with activity (R2 = 0.97) and intensity (R2 = 0.69) being the best explainers of changing gas demand. The 2002 residential building regulations are subject to an ex-post evaluation, which using empirical data finds a 44 ±9.5% shortfall in expected energy savings as well as a 13±1.6% level of non-compliance. A detailed energy demand model of the entire Irish energy system is presented together with scenario analysis of a large number of energy efficiency policies, which show an aggregate reduction in TFC of 8.9% compared to a reference scenario. The role for natural gas as a transition fuel over a long time horizon (2005-2050) is analysed using an energy systems model and a decomposition analysis, which shows the contribution of fuel switching to natural gas to be worth 12 percentage points of an overall 80% reduction in CO2 emissions. Finally, an analysis of the potential for CCS in Ireland finds gas CCS to be more robust than coal CCS for changes in fuel prices, capital costs and emissions reduction and the cost optimal location for a gas CCS plant in Ireland is found to be in Cork with sequestration in the depleted gas field of Kinsale.
Inclusive education policy, the general allocation model and dilemmas of practice in primary schools
Resumo:
Background: Inclusive education is central to contemporary discourse internationally reflecting societies’ wider commitment to social inclusion. Education has witnessed transforming approaches that have created differing distributions of power, resource allocation and accountability. Multiple actors are being forced to consider changes to how key services and supports are organised. This research constitutes a case study situated within this broader social service dilemma of how to distribute finite resources equitably to meet individual need, while advancing inclusion. It focuses on the national directive with regard to inclusive educational practice for primary schools, Department of Education and Science Special Education Circular 02/05, which introduced the General Allocation Model (GAM) within the legislative context of the Education of Persons with Special Educational Needs (EPSEN) Act (Government of Ireland, 2004). This research could help to inform policy with ‘facts about what is happening on the ground’ (Quinn, 2013). Research Aims: The research set out to unearth the assumptions and definitions embedded within the policy document, to analyse how those who are at the coalface of policy, and who interface with multiple interests in primary schools, understand the GAM and respond to it, and to investigate its effects on students and their education. It examines student outcomes in the primary schools where the GAM was investigated. Methods and Sample The post-structural study acknowledges the importance of policy analysis which explicitly links the ‘bigger worlds’ of global and national policy contexts to the ‘smaller worlds’ of policies and practices within schools and classrooms. This study insists upon taking the detail seriously (Ozga, 1990). A mixed methods approach to data collection and analysis is applied. In order to secure the perspectives of key stakeholders, semi-structured interviews were conducted with primary school principals, class teachers and learning support/resource teachers (n=14) in three distinct mainstream, non-DEIS schools. Data from the schools and their environs provided a profile of students. The researcher then used the Pobal Maps Facility (available at www.pobal.ie) to identify the Small Area (SA) in which each student resides, and to assign values to each address based on the Pobal HP Deprivation Index (Haase and Pratschke, 2012). Analysis of the datasets, guided by the conceptual framework of the policy cycle (Ball, 1994), revealed a number of significant themes. Results: Data illustrate that the main model to support student need is withdrawal from the classroom under policy that espouses inclusion. Quantitative data, in particular, highlighted an association between segregated practice and lower socioeconomic status (LSES) backgrounds of students. Up to 83% of the students in special education programmes are from lower socio-economic status (LSES) backgrounds. In some schools 94% of students from LSES backgrounds are withdrawn from classrooms daily for special education. While the internal processes of schooling are not solely to blame for class inequalities, this study reveals the power of professionals to order children in school, which has implications for segregated special education practice. Such agency on the part of key actors in the context of practice relates to ‘local constructions of dis/ability’, which is influenced by teacher habitus (Bourdieu, 1984). The researcher contends that inclusive education has not resulted in positive outcomes for students from LSES backgrounds because it is built on faulty assumptions that focus on a psycho-medical perspective of dis/ability, that is, placement decisions do not consider the intersectionality of dis/ability with class or culture. This study argues that the student need for support is better understood as ‘home/school discontinuity’ not ‘disability’. Moreover, the study unearths the power of some parents to use social and cultural capital to ensure eligibility to enhanced resources. Therefore, a hierarchical system has developed in mainstream schools as a result of funding models to support need in inclusive settings. Furthermore, all schools in the study are ‘ordinary’ schools yet participants acknowledged that some schools are more ‘advantaged’, which may suggest that ‘ordinary’ schools serve to ‘bury class’ (Reay, 2010) as a key marker in allocating resources. The research suggests that general allocation models of funding to meet the needs of students demands a systematic approach grounded in reallocating funds from where they have less benefit to where they have more. The calculation of the composite Haase Value in respect of the student cohort in receipt of special education support adopted for this study could be usefully applied at a national level to ensure that the greatest level of support is targeted at greatest need. Conclusion: In summary, the study reveals that existing structures constrain and enable agents, whose interactions produce intended and unintended consequences. The study suggests that policy should be viewed as a continuous and evolving cycle (Ball, 1994) where actors in each of the social contexts have a shared responsibility in the evolution of education that is equitable, excellent and inclusive.
Resumo:
High-permittivity ("high-k") dielectric materials are used in the transistor gate stack in integrated circuits. As the thickness of silicon oxide dielectric reduces below 2 nm with continued downscaling, the leakage current because of tunnelling increases, leading to high power consumption and reduced device reliability. Hence, research concentrates on finding materials with high dielectric constant that can be easily integrated into a manufacturing process and show the desired properties as a thin film. Atomic layer deposition (ALD) is used practically to deposit high-k materials like HfO2, ZrO2, and Al2O3 as gate oxides. ALD is a technique for producing conformal layers of material with nanometer-scale thickness, used commercially in non-planar electronics and increasingly in other areas of science and technology. ALD is a type of chemical vapor deposition that depends on self-limiting surface chemistry. In ALD, gaseous precursors are allowed individually into the reactor chamber in alternating pulses. Between each pulse, inert gas is admitted to prevent gas phase reactions. This thesis provides a profound understanding of the ALD of oxides such as HfO2, showing how the chemistry affects the properties of the deposited film. Using multi-scale modelling of ALD, the kinetics of reactions at the growing surface is connected to experimental data. In this thesis, we use density functional theory (DFT) method to simulate more realistic models for the growth of HfO2 from Hf(N(CH3)2)4/H2O and HfCl4/H2O and for Al2O3 from Al(CH3)3/H2O.Three major breakthroughs are discovered. First, a new reaction pathway, ’multiple proton diffusion’, is proposed for the growth of HfO2 from Hf(N(CH3)2)4/H2O.1 As a second major breakthrough, a ’cooperative’ action between adsorbed precursors is shown to play an important role in ALD. By this we mean that previously-inert fragments can become reactive once sufficient molecules adsorb in their neighbourhood during either precursor pulse. As a third breakthrough, the ALD of HfO2 from Hf(N(CH3)2)4 and H2O is implemented for the first time into 3D on-lattice kinetic Monte-Carlo (KMC).2 In this integrated approach (DFT+KMC), retaining the accuracy of the atomistic model in the higher-scale model leads to remarkable breakthroughs in our understanding. The resulting atomistic model allows direct comparison with experimental techniques such as X-ray photoelectron spectroscopy and quartz crystal microbalance.