3 resultados para Self-help devices for the disabled
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Background: Research suggests that patients presenting to hospital with self-cutting differ from those with intentional overdose in demographic and clinical characteristics. However, large-scale national studies comparing self-cutting patients with those using other self-harm methods are lacking. We aimed to compare hospital-treated self-cutting and intentional overdose, to examine the role of gender in moderating these differences, and examine the characteristics and outcomes of those patients presenting with combined self-cutting and overdose. Methods: Between 2003 and 2010, the Irish National Registry of Deliberate Self-Harm recorded 42,585 self-harm presentations to Irish hospital emergency departments meeting the study inclusion criteria. Data were obtained on demographic and clinical characteristics by independent data registration officers. Results: Compared with overdose only, involvement of self-cutting (with or without overdose) was significantly more common in males than females, with an overrepresentation of males aged <35 years. Independent of gender, involvement of self-cutting (with or without overdose) was significantly associated with younger age, city residence, repetition within 30 days and repetition within a year (females only). Factors associated with self-cutting as the sole method were no fixed abode/living in an institution, presenting outside 9 a.m. to 5 p.m., not consuming alcohol and repetition between 31 days and 1 year (males only). Conclusion: The demographic and clinical differences between self-harm patients underline the presence of different subgroups with implications for service provision and prevention of repeated self-harm. Given the relationship between self-cutting and subsequent repetition, service providers need to ensure that adequate follow-up arrangements and supports are in place for the patient.
Resumo:
Microwave annealing is an emerging technique for achieving ordered patterns of block copolymer films on substrates. Little is understood about the mechanisms of microphase separation during the microwave annealing process and how it promotes the microphase separation of the blocks. Here, we use controlled power microwave irradiation in the presence of tetrahydrofuran (THF) solvent, to achieve lateral microphase separation in high- lamellar-forming poly(styrene-b-lactic acid) PS-b-PLA. A highly ordered line pattern was formed within seconds on silicon, germanium and silicon on insulator (SOI) substrates. In-situ temperature measurement of the silicon substrate coupled to condition changes during "solvo-microwave" annealing allowed understanding of the processes to be attained. Our results suggest that the substrate has little effect on the ordering process and is essentially microwave transparent but rather, it is direct heating of the polar THF molecules that causes microphase separation. It is postulated that the rapid interaction of THF with microwaves and the resultant temperature increase to 55 degrees C within seconds causes an increase of the vapor pressure of the solvent from 19.8 to 70 kPa. This enriched vapor environment increases the plasticity of both PS and PLA chains and leads to the fast self-assembly kinetics. Comparing the patterns formed on silicon, germanium and silicon on insulator (SOI) and also an in situ temperature measurement of silicon in the oven confirms the significance of the solvent over the role of substrate heating during "solvo-microwave" annealing. Besides the short annealing time which has technological importance, the coherence length is on a micron scale and dewetting is not observed after annealing. The etched pattern (PLA was removed by an Ar/O-2 reactive ion etch) was transferred to the underlying silicon substrate fabricating sub-20 nm silicon nanowires over large areas demonstrating that the morphology is consistent both across and through the film.
Resumo:
The paper presents an investigation of fix-referenced and self-referenced wave energy converters and a comparison of their corresponding wave energy conversion capacities from real seas. For conducting the comparisons, two popular wave energy converters, point absorber and oscillating water column, and their power conversion capacities in the fixed-referenced and self-referenced forms have been numerically studied and compared. In the numerical models, the deviceâ s power extractions from seas are maximized using the correspondingly optimized power take-offs in different sea states, thus their power conversion capacities can be calculated and compared. From the comparisons and analyses, it is shown that the energy conversion capacities of the self-referenced devices can be significantly increased if the motions of the device itself can be utilized for wave energy conversion; and the self-referenced devices can be possibly designed to be compliant in long waves, which could be a very beneficial factor for device survivability in the extreme wave conditions (normally long waves). In this regards, the self-referenced WECs (wave energy converters) may be better options in terms of wave energy conversion from the targeted waves in seas (frequently the most occurred), and in terms of the device survivability, especially in the extreme waves when compared to the fix-referenced counterparts.