4 resultados para Sea Wasp
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This study was undertaken to investigate the general biology, including the reproductive cycle and health status, of two clam taxa in Irish waters, with particular reference to the Irish Sea area. Monthly samples of the soft shell clam, Mya arenaria, were collected from Bannow Bay, Co. Wexford, Ireland, for sixteen months, and of the razor clam, Ensis spp. from the Skerries region (Irish Sea) between June 2010 and September 2011. In 2010, M. arenaria in Bannow Bay matured over the summer months, with both sexes either ripe or spawning by August. The gonads of both sexes of E. siliqua developed over autumn and winter 2010, with the first spawning individuals being recorded in January 2011. Two unusually cold winters, followed by a warmer than average spring, appear to have affected M. arenaria and E. siliqua gametogenesis at these sites. It was noted that wet weight of E. siliqua dropped significantly in the summer of both 2010 and 2011, after spawning, which may impact on the economic viability of fishing during this period. Additional samples of M. arenaria were collected at Flaxfort (Ireland), and Ensis spp. at Oxwich (Wales), and the pathology of all clams was examined using both histological and molecular methods. No pathogenic conditions were observed in M. arenaria while Prokaryote inclusions, trematode parasites, Nematopsis spp. and inflammatory pathologies were observed at low incidences in razor clams from Ireland but not from Wales; the first time these conditions have been reported in Ensis spp. in northern European waters. Mya arenaria from sites in Europe and eastern and western North America were investigated for genetic variation using both mitochondrial (cytochrome oxidase I (COI) and 16S ribosomal RNA genes) and nuclear markers (10 microsatellite loci). Both mitochondrial CO1 and all nuclear markers showed reduced levels of variation in certain European samples, with significant differences in haplotype and allelic composition between most samples, particularly those from the two different continents, but with the same common haplotypes or alleles throughout the range. The appearance of certain unique rare haplotypes and microsatellite alleles in the European samples suggest a complicated origin involving North American colonization but also possible southern European Pleistocene refugia. Specimens of Ensis spp. were obtained from five coastal areas around Ireland and Wales and species-specific PCR primers were used to amplify the internal transcribed spacer region 1 (ITS1) and the mitochondrial DNA CO1 gene and all but 15 razor clams were identified as Ensis siliqua. Future investigations should focus on continued monitoring of reproductive biology and pathology of the two clam taxa (in particular, to assess the influence of environmental change), and on genetics of southern European M. arenaria and sequencing the CO1 gene in Ensis individuals to clarify species identity
Resumo:
The soft shell clam, Mya arenaria, and the razor clam, Ensis siliqua, are widely distributed in Irish waters. Though the reproductive biology and other aspects of the physiology of these species has been previously investigated, little or no data are currently available on their health status. As this knowledge is essential for correct management of a species, M. arenaria and E. siliqua were examined to assess their current health status using histological and molecular methods, over a period of sixteen months. No pathogens or disease were observed in M. arenaria, and low incidences of Prokaryote inclusions, trematode parasites, Nematopsis spp. and eosinophilic bodies were recorded in razor clams for the first time in Northern European waters.
Resumo:
Knowledge of the reproductive cycle of a species is a prerequisite for sustainable management of a fishery. The infaunal marine bivalve, Ensis siliqua, is a commercially important species in Europe, and is exploited in many countries, including Ireland, where it is sold by wet weight. Seasonal variations in the reproductive cycle of subtidal razor clams from the Skerries region of the Irish Sea, an important fisheries area, were examined between June 2010 and September 2011 while monitoring weight. Histological examination revealed that the E. siliqua sex-ratio was not different from parity, and no hermaphrodites were observed in the samples collected. In the summer months of 2010 all female clams were either spent or in early development, with just a small percentage of males still spawning. The gonads of both sexes developed over the autumn and winter months of 2010, with the first spawning individuals recorded in January 2011. Spawning peaked in March 2011, but unlike in 2010, spawning continued through June and July with all animals spent in August 2011. The earlier and longer spawning period found in this species in 2011 compared to 2010 may have been due to the colder than normal temperature observed during the winter of 2010 plus the relatively warmer temperatures of Spring 2011, which could have affected the gametogenic development of E. siliqua in the Irish Sea. It was noted that wet weight dropped in the summer months of both years, immediately after the spawning period which may impact on the practicality of fishing for this species during this period. Timing of development and spawning is compared with other sites in the Irish Sea and elsewhere in Europe, including the Iberian Peninsula.
Resumo:
The climatic development of the Mid to Late Quaternary (last 400,000 years) is characterised by fluctuation between glacial and interglacial periods leading to the present interglacial, the Holocene. In comparison to preceding periods it was believed the Holocene represented a time of relative climatic stability. However, recent work has shown that the Holocene can be divided into cooler periods such as the Little Ice Age alternating with time intervals where climatic conditions ameliorated i.e. Medieval Warm Period, Holocene Thermal Optimum and the present Modern Optimum. In addition, the Holocene is recognised as a period with increasing anthropogenic influence on the environment. Onshore records recording glacial/interglacial cycles as well as anthropogenic effects are limited. However, sites of sediment accumulation on the shallow continental shelf offer the potential to reconstruct these events. Such sites include tunnel valleys and low energy, depositional settings. In this study we interrogated the sediment stratigraphy at such sites in the North Sea and Irish Sea using traditional techniques, as well as novel applications of geotechnical data, to reconstruct the palaeoenvironmental record. Within the German North Sea sector a combination of core, seismic and in-situ Cone Penetration Testing (CPT) data was used to identify sedimentary units, place them within a morphological context, relate them to glacial or interglacial periods stratigraphically, and correlate them across the German North Sea. Subsequently, we were able to revise the Mid to Late Quaternary stratigraphy for the North Sea using this new and novel data. Similarly, Holocene environmental changes were investigated within the Irish Sea at a depositional site with active anthropogenic influence. The methods used included analyses on grain-size distribution, foraminifera, gamma spectrometry, AMS 14C and physical core logging. The investigation revealed a strong fluctuating climatic signal early in the areas history before anthropogenic influence affects the record through trawling.