2 resultados para SYSTEM FAILURE ANALYSIS
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
With the importance of renewable energy well-established worldwide, and targets of such energy quantified in many cases, there exists a considerable interest in the assessment of wind and wave devices. While the individual components of these devices are often relatively well understood and the aspects of energy generation well researched, there seems to be a gap in the understanding of these devices as a whole and especially in the field of their dynamic responses under operational conditions. The mathematical modelling and estimation of their dynamic responses are more evolved but research directed towards testing of these devices still requires significant attention. Model-free indicators of the dynamic responses of these devices are important since it reflects the as-deployed behaviour of the devices when the exposure conditions are scaled reasonably correctly, along with the structural dimensions. This paper demonstrates how the Hurst exponent of the dynamic responses of a monopile exposed to different exposure conditions in an ocean wave basin can be used as a model-free indicator of various responses. The scaled model is exposed to Froude scaled waves and tested under different exposure conditions. The analysis and interpretation is carried out in a model-free and output-only environment, with only some preliminary ideas regarding the input of the system. The analysis indicates how the Hurst exponent can be an interesting descriptor to compare and contrast various scenarios of dynamic response conditions.
Resumo:
This thesis investigates the phenotypic and genotypic diversity of non-dairy L. lactis strains and their application to dairy fermentations. A bank of non-dairy lactococci were isolated from grass, vegetables and the bovine rumen. Subsequent analysis of these L. lactis strains revealed seven strains to possess cremoris genotypes which did not correlate with their observed phenotypes. Multi-locus sequence typing (MLST) and average nucleotide identity (ANI) highlighted the genetic diversity of lactis and cremoris subspecies. The application of these non-dairy lactococci to cheese production was also assessed. In milk, non-dairy strains formed diverse volatile profiles and selected strains were used as adjuncts in a mini Gouda-type cheese system. Sensory analysis showed non-dairy strains to be strongly associated with the development of off-flavours and bitterness. However, microfluidisation appeared to reduce bitterness. A novel bacteriophage, ɸL47, was isolated using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. The phage, a member of the Siphoviridae, possessed a long tail fiber, previously unseen in dairy lactococcal phages. Genome sequencing revealed ɸL47 to be the largest sequenced lactococcal phage to date and owing to the high % similarity with ɸ949, a second member of the 949 group. Finally, to identify and characterise specific genes which may be important in niche adaptation and for applications to dairy fermentations, comparative genome sequence analysis was performed on L. lactis from corn (DPC6853), the bovine rumen (DPC6853) and grass (DPC6860). This study highlights the contribution of niche specialisation to the intra-species diversity of L. lactis and the adaptation of this organism to different environments. In summary this thesis describes the genetic diversity of L. lactis strains from outside the dairy environment and their potential application in dairy fermentations.