3 resultados para STAR-FORMING REGIONS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1966, Roy Geary, Director of the ESRI, noted “the absence of any kind of import and export statistics for regions is a grave lacuna” and further noted that if regional analyses were to be developed then regional Input-Output Tables must be put on the “regular statistical assembly line”. Forty-five years later, the lacuna lamented by Geary still exists and remains the most significant challenge to the construction of regional Input-Output Tables in Ireland. The continued paucity of sufficient regional data to compile effective regional Supply and Use and Input-Output Tables has retarded the capacity to construct sound regional economic models and provide a robust evidence base with which to formulate and assess regional policy. This study makes a first step towards addressing this gap by presenting the first set of fully integrated, symmetric, Supply and Use and domestic Input-Output Tables compiled for the NUTS 2 regions in Ireland: The Border, Midland and Western region and the Southern & Eastern region. These tables are general purpose in nature and are consistent fully with the official national Supply & Use and Input-Output Tables, and the regional accounts. The tables are constructed using a survey-based or bottom-up approach rather than employing modelling techniques, yielding more robust and credible tables. These tables are used to present a descriptive statistical analysis of the two administrative NUTS 2 regions in Ireland, drawing particular attention to the underlying structural differences of regional trade balances and composition of Gross Value Added in those regions. By deriving regional employment multipliers, Domestic Demand Employment matrices are constructed to quantify and illustrate the supply chain impact on employment. In the final part of the study, the predictive capability of the Input-Output framework is tested over two time periods. For both periods, the static Leontief production function assumptions are relaxed to allow for labour productivity. Comparative results from this experiment are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work concerns the atomic layer deposition (ALD) of copper. ALD is a technique that allows conformal coating of difficult topographies such as narrow trenches and holes or even shadowed regions. However, the deposition of pure metals has so far been less successful than the deposition of oxides except for a few exceptions. Challenges include difficulties associated with the reduction of the metal centre of the precursor at reasonable temperatures and the tendency of metals to agglomerate during the growth process. Cu is a metal of special technical interest as it is widely used for interconnects on CMOS devices. These interconnects are usually fabricated by electroplating, which requires the deposition of thin Cu seed layers onto the trenches and vias. Here, ALD is regarded as potential candidate for replacing the current PVD technique, which is expected to reach its limitations as the critical dimensions continue to shrink. This work is separated into two parts. In the first part, a laboratory-scale ALD reactor was constructed and used for the thermal ALD of Cu. In the second part, the potentials of the application of Cu ALD on industry scale fabrication were examined in a joint project with Applied Materials and Intel. Within this project precursors developed by industrial partners were evaluated on a 300 mm Applied Materials metal-ALD chamber modified with a direct RF-plasma source. A feature that makes ALD a popular technique among researchers is the possibility to produce high- level thin film coatings for micro-electronics and nano-technology with relatively simple laboratory- scale reactors. The advanced materials and surfaces group (AMSG) at Tyndall National Institute operates a range of home-built ALD reactors. In order to carry out Cu ALD experiments, modifications to the normal reactor design had to be made. For example a carrier gas mechanism was necessary to facilitate the transport of the low-volatile Cu precursors. Precursors evaluated included the readily available Cu(II)-diketonates Cu-bis(acetylacetonate), Cu-bis(2,2,6,6-tetramethyl-hepta-3,5-dionate) and Cu-bis(1,1,1,5,5,5-hexafluoacetylacetonate) as well as the Cu-ketoiminate Cu-bis(4N-ethylamino- pent-3-en-2-onate), which is also known under the trade name AbaCus (Air Liquide), and the Cu(I)- silylamide 1,3-diisopropyl-imidazolin-2-ylidene Cu(I) hexamethyldisilazide ([NHC]Cu(hmds)), which was developed at Carleton University Ottawa. Forming gas (10 % H2 in Ar) was used as reducing agent except in early experiments where formalin was used. With all precursors an extreme surface selectivity of the deposition process was observed and significant growth was only achieved on platinum-group metals. Improvements in the Cu deposition process were obtained with [NHC]Cu(hmds) compared with the Cu(II) complexes. A possible reason is the reduced oxidation state of the metal centre. Continuous Cu films were obtained on Pd and indications for saturated growth with a rate of about 0.4 Å/cycle were found for deposition at 220 °C. Deposits obtained on Ru consisted of separated islands. Although no continuous films could be obtained in this work the relatively high density of Cu islands obtained was a clear improvement as compared to the deposits grown with Cu(II) complexes. When ultra-thin Pd films were used as substrates, island growth was also observed. A likely reason for this extreme difference to the Cu films obtained on thicker Pd films is the lack of stress compensation within the thin films. The most likely source of stress compensation in the thicker Pd films is the formation of a graded interlayer between Pd and Cu by inter-diffusion. To obtain continuous Cu films on more materials, reduction of the growth temperature was required. This was achieved in the plasma assisted ALD experiments discussed in the second part of this work. The precursors evaluated included the AbaCus compound and CTA-1, an aliphatic Cu-bis(aminoalkoxide), which was supplied by Adeka Corp.. Depositions could be carried out at very low temperatures (60 °C Abacus, 30 °C CTA-1). Metallic Cu could be obtained on all substrate materials investigated, but the shape of the deposits varied significantly between the substrate materials. On most materials (Si, TaN, Al2O3, CDO) Cu grew in isolated nearly spherical islands even at temperatures as low as 30 °C. It was observed that the reason for the island formation is the coalescence of the initial islands to larger, spherical islands instead of forming a continuous film. On the other hand, the formation of nearly two-dimensional islands was observed on Ru. These islands grew together forming a conductive film after a reasonably small number of cycles. The resulting Cu films were of excellent crystal quality and had good electrical properties; e.g. a resistivity of 2.39 µΩ cm was measured for a 47 nm thick film. Moreover, conformal coating of narrow trenches (1 µm deep 100/1 aspect ratio) was demonstrated showing the feasibility of the ALD process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geiparvarin is a natural product which contains both a 3(2H)-furanone and a coumarin moiety in its structure. The aim of this project was to investigate the use of Pd(0)-mediated C–C bondforming reactions to produce structurally modified geiparvarins. Chapter 1 consists of a review of the relevant literature, including that pertaining to the syntheses of selected naturally occurring 3(2H)-furanones. The known syntheses of geiparvarin and closely related analogues are examined, along with the documented biological activity of these compounds. The synthetic routes which allow access to 4-substituted-3(2H)-furanones are also described. Chapter 2 describes in detail the synthesis of a variety of novel structurally modified geiparvarins by two complementary routes, both approaches utilising Pd(0)-mediated crosscoupling reactions, and discusses the characterisation of these compounds. The preparation of 5-ethyl-3(2H)-furanones is described, as is their incorporation into geiparvarin and the corresponding 5″-alkylgeiparvarin analogues via formation and dehydration of intermediate alcohols. Halogenation of 5-ethyl-3(2H)-furanones and the corresponding geiparvarin derivatives is discussed, along with further reactions of the resulting halides. Preparation of 3″-arylgeiparvarins involving both Suzuki–Miyura and Stille reactions, using the appropriate intermediate iodides and bromides, is described. The application of Stille and Heck conditions to give 3″-ethenylgeiparvarin analogues and Sonogashira conditions to produce 3″-ethynylgeiparvarin analogues, using the relevant intermediate iodides, is also extensively outlined. Chapter 3 contains all of the experimental data and details of the synthetic methods employed for the compounds prepared during the course of this research. All novel compounds prepared were fully characterised using NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis; the details of which are included.