8 resultados para SEMICONDUCTOR-LASER
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
As a device, the laser is an elegant conglomerate of elementary physical theories and state-of-the-art techniques ranging from quantum mechanics, thermal and statistical physics, material growth and non-linear mathematics. The laser has been a commercial success in medicine and telecommunication while driving the development of highly optimised devices specifically designed for a plethora of uses. Due to their low-cost and large-scale predictability many aspects of modern life would not function without the lasers. However, the laser is also a window into a system that is strongly emulated by non-linear mathematical systems and are an exceptional apparatus in the development of non-linear dynamics and is often used in the teaching of non-trivial mathematics. While single-mode semiconductor lasers have been well studied, a unified comparison of single and two-mode lasers is still needed to extend the knowledge of semiconductor lasers, as well as testing the limits of current model. Secondly, this work aims to utilise the optically injected semiconductor laser as a tool so study non-linear phenomena in other fields of study, namely ’Rogue waves’ that have been previously witnessed in oceanography and are suspected as having non-linear origins. The first half of this thesis includes a reliable and fast technique to categorise the dynamical state of optically injected two mode and single mode lasers. Analysis of the experimentally obtained time-traces revealed regions of various dynamics and allowed the automatic identification of their respective stability. The impact of this method is also extended to the detection regions containing bi-stabilities. The second half of the thesis presents an investigation into the origins of Rogue Waves in single mode lasers. After confirming their existence in single mode lasers, their distribution in time and sudden appearance in the time-series is studied to justify their name. An examination is also performed into the existence of paths that make Rogue Waves possible and the impact of noise on their distribution is also studied.
Resumo:
Semiconductor lasers have the potential to address a number of critical applications in advanced telecommunications and signal processing. These include applications that require pulsed output that can be obtained from self-pulsing and mode-locked states of two-section devices with saturable absorption. Many modern applications place stringent performance requirements on the laser source, and a thorough understanding of the physical mechanisms underlying these pulsed modes of operation is therefore highly desirable. In this thesis, we present experimental measurements and numerical simulations of a variety of self-pulsation phenomena in two-section semiconductor lasers with saturable absorption. Our theoretical and numerical results will be based on rate equations for the field intensities and the carrier densities in the two sections of the device, and we establish typical parameter ranges and assess the level of agreement with experiment that can be expected from our models. For each of the physical examples that we consider, our model parameters are consistent with the physical net gain and absorption of the studied devices. Following our introductory chapter, the first system that we consider is a two-section Fabry-Pérot laser. This example serves to introduce our method for obtaining model parameters from the measured material dispersion, and it also allows us to present a detailed discussion of the bifurcation structure that governs the appearance of selfpulsations in two-section devices. In the following two chapters, we present two distinct examples of experimental measurements from dual-mode two-section devices. In each case we have found that single mode self-pulsations evolve into complex coupled dualmode states following a characteristic series of bifurcations. We present optical and mode resolved power spectra as well as a series of characteristic intensity time traces illustrating this progression for each example. Using the results from our study of a twosection Fabry-Pérot device as a guide, we find physically appropriate model parameters that provide qualitative agreement with our experimental results. We highlight the role played by material dispersion and the underlying single mode self-pulsing orbits in determining the observed dynamics, and we use numerical continuation methods to provide a global picture of the governing bifurcation structure. In our concluding chapter we summarise our work, and we discuss how the presented results can inform the development of optimised mode-locked lasers for performance applications in integrated optics.
Resumo:
Future high speed communications networks will transmit data predominantly over optical fibres. As consumer and enterprise computing will remain the domain of electronics, the electro-optical conversion will get pushed further downstream towards the end user. Consequently, efficient tools are needed for this conversion and due to many potential advantages, including low cost and high output powers, long wavelength Vertical Cavity Surface Emitting Lasers (VCSELs) are a viable option. Drawbacks, such as broader linewidths than competing options, can be mitigated through the use of additional techniques such as Optical Injection Locking (OIL) which can require significant expertise and expensive equipment. This thesis addresses these issues by removing some of the experimental barriers to achieving performance increases via remote OIL. Firstly, numerical simulations of the phase and the photon and carrier numbers of an OIL semiconductor laser allowed the classification of the stable locking phase limits into three distinct groups. The frequency detuning of constant phase values (ø) was considered, in particular ø = 0 where the modulation response parameters were shown to be independent of the linewidth enhancement factor, α. A new method to estimate α and the coupling rate in a single experiment was formulated. Secondly, a novel technique to remotely determine the locked state of a VCSEL based on voltage variations of 2mV−30mV during detuned injection has been developed which can identify oscillatory and locked states. 2D & 3D maps of voltage, optical and electrical spectra illustrate corresponding behaviours. Finally, the use of directly modulated VCSELs as light sources for passive optical networks was investigated by successful transmission of data at 10 Gbit/s over 40km of single mode fibre (SMF) using cost effective electronic dispersion compensation to mitigate errors due to wavelength chirp. A widely tuneable MEMS-VCSEL was established as a good candidate for an externally modulated colourless source after a record error free transmission at 10 Gbit/s over 50km of SMF across a 30nm single mode tuning range. The ability to remotely set the emission wavelength using the novel methods developed in this thesis was demonstrated.
Resumo:
Incumbent telecommunication lasers emitting at 1.5 µm are fabricated on InP substrates and consist of multiple strained quantum well layers of the ternary alloy InGaAs, with barriers of InGaAsP or InGaAlAs. These lasers have been seen to exhibit very strong temperature dependence of the threshold current. This strong temperature dependence leads to a situation where external cooling equipment is required to stabilise the optical output power of these lasers. This results in a significant increase in the energy bill associated with telecommunications, as well as a large increase in equipment budgets. If the exponential growth trend of end user bandwidth demand associated with the internet continues, these inefficient lasers could see the telecommunications industry become the dominant consumer of world energy. For this reason there is strong interest in developing new, much more efficient telecommunication lasers. One avenue being investigated is the development of quantum dot lasers on InP. The confinement experienced in these low dimensional structures leads to a strong perturbation of the density of states at the band edge, and has been predicted to result in reduced temperature dependence of the threshold current in these devices. The growth of these structures is difficult due to the large lattice mismatch between InP and InAs; however, recently quantum dots elongated in one dimension, known as quantum dashes, have been demonstrated. Chapter 4 of this thesis provides an experimental analysis of one of these quantum dash lasers emitting at 1.5 µm along with a numerical investigation of threshold dynamics present in this device. Another avenue being explored to increase the efficiency of telecommunications lasers is bandstructure engineering of GaAs-based materials to emit at 1.5 µm. The cause of the strong temperature sensitivity in InP-based quantum well structures has been shown to be CHSH Auger recombination. Calculations have shown and experiments have verified that the addition of bismuth to GaAs strongly reduces the bandgap and increases the spin orbit splitting energy of the alloy GaAs1−xBix. This leads to a bandstructure condition at x = 10 % where not only is 1.5 µm emission achieved on GaAs-based material, but also the bandstructure of the material can naturally suppress the costly CHSH Auger recombination which plagues InP-based quantum-well-based material. It has been predicted that telecommunications lasers based on this material system should operate in the absence of external cooling equipment and offer electrical and optical benefits over the incumbent lasers. Chapters 5, 6, and 7 provide a first analysis of several aspects of this material system relevant to the development of high bismuth content telecommunication lasers.
Resumo:
Energy efficient Wavelength Division Multiplexing (WDM) is the key to satisfying the future bandwidth requirements of datacentres. As the silicon photonics platform is regarded the only technology able to meet the required power and cost efficiency levels, the development of silicon photonics compatible narrow linewidth lasers is now crucial. We discuss the requirements for such laser systems and report the experimental demonstration of a compact uncooled external-cavity mW-class laser architecture with a tunable Si Photonic Crystal resonant reflector, suitable for direct Frequency Modulation.
Resumo:
Semiconductor nanowires are pseudo 1-D structures where the magnitude of the semiconducting material is confined to a length of less than 100 nm in two dimensions. Semiconductor nanowires have a vast range of potential applications, including electronic (logic devices, diodes), photonic (laser, photodetector), biological (sensors, drug delivery), energy (batteries, solar cells, thermoelectric generators), and magnetic (spintronic, memory) devices. Semiconductor nanowires can be fabricated by a range of methods which can be categorised into one of two paradigms, bottom-up or top-down. Bottom-up processes can be defined as those where structures are assembled from their sub-components in an additive fashion. Top-down fabrication strategies use sculpting or etching to carve structures from a larger piece of material in a subtractive fashion. This seminar will detail a number of novel routes to fabricate semiconductor nanowires by both bottom-up and top-down paradigms. Firstly, a novel bottom-up route to fabricate Ge nanowires with controlled diameter distributions in the sub-20 nm regime will be described. This route details nanowire synthesis and diameter control in the absence of a foreign seed metal catalyst. Additionally a top-down route to nanowire array fabrication will be detailed outlining the importance of surface chemistry in high-resolution electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) on Ge and Bi2Se3 surfaces. Finally, a process will be described for the directed self-assembly of a diblock copolymer (PS-b-PDMS) using an EBL defined template. This section will also detail a route toward selective template sidewall wetting of either block in the PS-b-PDMS system, through tailored functionalisation of the template and substrate surfaces.
Resumo:
Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.
Resumo:
In this paper, we present a novel 1x2 multi-mode-interferometer-Fabry-Perot (MMI-FP) laser diode, which demonstrated tunable single frequency operation with more than 30dB side mode suppression ratio (SMSR) and a tuning range of 25nm in the C and L bands, as well as a 750 kHz linewidth. These lasers do not require material regrowth and high resolution gratings; resulting in a simpler process that can significantly increase the yield and reduce the cost.