3 resultados para SECONDARY COMPOUNDS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research work in this thesis reports rapid separation of biologically important low molecular weight compounds by microchip electrophoresis and ultrahigh liquid chromatography. Chapter 1 introduces the theory and principles behind capillary electrophoresis separation. An overview of the history, different modes and detection techniques coupled to CE is provided. The advantages of microchip electrophoresis are highlighted. Some aspects of metal complex analysis by capillary electrophoresis are described. Finally, the theory and different modes of the liquid chromatography technology are presented. Chapter 2 outlines the development of a method for the capillary electrophoresis of (R, S) Naproxen. Variable parameters of the separation were optimized (i.e. buffer concentration and pH, concentration of chiral selector additives, applied voltage and injection condition).The method was validated in terms of linearity, precision, and LOD. The optimized method was then transferred to a microchip electrophoresis system. Two different types of injection i.e. gated and pinched, were investigated. This microchip method represents the fastest reported chiral separation of Naproxen to date. Chapter 3 reports ultra-fast separation of aromatic amino acid by capillary electrophoresis using the short-end technique. Variable parameters of the separation were optimized and validated. The optimized method was then transferred to a microchip electrophoresis system where the separation time was further reduced. Chapter 4 outlines the use of microchip electrophoresis as an efficient tool for analysis of aluminium complexes. A 2.5 cm channel with linear imaging UV detection was used to separate and detect aluminium-dopamine complex and free dopamine. For the first time, a baseline, separation of aluminium dopamine was achieved on a 15 seconds timescale. Chapter 5 investigates a rapid, ultra-sensitive and highly efficient method for quantification of histamine in human psoriatic plaques using microdialysis and ultrahigh performance liquid chromatography with fluorescence detection. The method utilized a sub-two-micron packed C18 stationary phase. A fluorescent reagent, 4-(1-pyrene) butyric acid N-hydroxysuccinimide ester was conjugated to the primary and secondary amino moieties of histamine. The dipyrene-labeled histamine in human urine was also investigated by ultrahigh pressure liquid chromatography using a C18 column with 1.8 μm particle diameter. These methods represent one of the fastest reported separations to date of histamine using fluorescence detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh resolution mass spectrometry. Kendrick Mass Defect and Van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the VOC mixtures when compared to the one component precursor system. The elemental composition of the compounds identified in the monomeric region from the ozonolysis of both α-pinene and VOC mixtures represented the ambient organic composition of particles collected at the boreal forest site reasonably well, with about 70% of common molecular formulae. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.